Tech Tip: Gaining Performance from Ignition Timing – UnderhoodService

Tech Tip: Gaining Performance from Ignition Timing

Entry-level racers and performance enthusiasts who are involved in drag, oval or street performance often have difficulty understanding spark advance. The cool thing about ignition timing is you can usually get a considerable performance increase for little or no money. But, some time and effort will be required.

Entry-level racers and performance enthusiasts who are involved in drag, oval or street performance often have difficulty understanding spark advance.

The cool thing about ignition timing is you can usually get a considerable performance increase for little or no money. But, some time and effort will be required.

Let’s start with a simple explanation of why we need spark advance and how much of it we want.

First – When you hook up the timing light to the #1 spark plug wire and it flashes a light beam onto the timing tab, it’s showing you when the spark occurs, NOT when the ignition occurs and the explosion that starts to push the piston down the cylinder.

We want this to happen just as the pistons reach the top of the compression stroke, but it takes time for the spark plug to ignite the fuel mixture. This “time” is measured in crankshaft degrees and is the difference between when the plug fires and the explosion occurs to push the piston down the cylinder – producing the power stroke.

Next – How much “time” or how many degrees of advance is correct. Well, that changes with each application but in most cases it will be as much spark advance as we can get as soon as we can get it without having detonation or “ping”.

Now that we know why we want spark advance and that we want all we can get without detonation – How do we get it?

If the engine is already in the car and running, we will have to hope the timing mark is correct. If you are building an engine or having one built at a shop, make sure the timing mark is correct; use a dial indicator on the #1 piston head to find “top dead center.” Also, if the damper is easy to get to, put a 38° mark on it to use as a reference on the stock timing tab. The formula we use is Dia.×3.1416÷360×38 (Diameter of the dampener/balancer × PI ÷ 360°×38°, or with numbers: 8×3.1416(25.1328)÷360(0.0698" per degree)×38°(2.6529" which you mark on your balancer away from your TDC mark), this distance will be 38° on whatever diameter damper you are using.

Now we know the timing tab is correct, and we have a 38° mark on the damper, we can now start to work on our timing “curve.”

Most racing and street performance ignitions do not have vacuum advance and the stock type distributors that are sent to a shop to be recurved should have the vacuum advance removed and locked out. For this reason we will deal only with mechanical advance. If you send your distributor to a shop to be recurved they can get you pretty close to the correct curve on a distributor machine. We usually install a 26° mechanical curve that starts about 100 rpm higher than the engines idle rpm and have all 26° in by 2,800 rpm, this is a good general purpose timing curve when used with 12° initial timing set at engine idle.

This, however, is not perfect or optimum for any one combination.

A street/strip car that runs on pump gas may “ping” with this much spark advance and will require less initial advance or heavier springs to slow down the “curve.” Where as a low compression, low stall speed converter car may respond better with more initial spark advance or lighter springs for a quicker “curve” – but watch it if you begin your mechanical advance curve at or below the idle rpm, the car will be a real pain in the ass to drive and tune.

For circle track applications, these motors almost always operate over the rpm where total advance is needed so the timing “curve” is not nearly as important as having the correct total spark advance. This is where the 38° mark is very handy to have. We have had much success with instant advance curves in these engines. This is where we start engines on about 10° of spark advance and the instant it fires, the timing goes to the total advance – as long as you use high enough octane fuel this gives a nice clean idle and very quick response.

As you can see, there’s a lot you can do with ignition timing, and every engine will require a specific curve and total spark advance, but if you take the time to sort out what’s best for your engine, you will gain performance without spending a lot of money, and isn’t that what we are all after.

Tech Tip courtesy of Jensen’s Engine Technologies.

You May Also Like

Lifter Deactivation

The area of contact between the lifters and cam lobes is the highest loaded surface inside an engine.

The basic function of a valve lifter is pretty simple. It sits on the camshaft and transfers the motions of the cam lobe up through the pushrods and rockers to open and close the valves. The size and shape of the cam lobe under the lifter (multiplied by the ratio of the rocker arms) determine valve lift and duration. As such, the lifter just follows the motions of the cam. But, it does play a role in valvetrain lash (clearance) and noise.

Alternator Testing For No Charge Conditions

Many alternator problems turn out to be nothing more than a bad connection at the alternator or a bad wiring harness.

Understanding Coolants

All-season coolant used inorganic acid technology and worked great for almost 30 years.

Ignition System Do’s and Don’ts

Why do ignition systems give technicians problems when diagnosing ignition-related misfires? The answer is that some technicians use tests that might give inconclusive results or do damage to the coil or drivers inside a module.

Tools To Service Serpentine Belts

Servicing the serpentine belt on some vehicles is a tough task.

Other Posts

Battery Charging and Diagnostics

Here are six tips to use when diagnosing a vehicle with a dead battery. 

Why Do Timing Chains Stretch?

As the timing chain wears, it can change the timing of the camshaft and crankshaft.

Carbon Deposits and Direct Injection Engines

The primary cause of these problems is that fuel and added detergents are not hitting the back of the intake valves.

Acura Turbo Engine Service

It is important to check the operation of the solenoids that control vacuum to the actuators.