Tech Tip: Measuring Excessive Blowby – UnderhoodService

Tech Tip: Measuring Excessive Blowby

You've built an engine exactly the same as the last engine, but the power seems to be down 10 to 20 horsepower on the dyno. Could it be excessive blowby because of a ring sealing problem? One way to find out is to measure crankcase blowby. A blowby flow meter can tell you precisely how much blowby is occurring inside the engine.

By Larry Carley
Technical Editor

You’ve built an engine exactly the same as the last engine, but the power seems to be down 10 to 20 horsepower on the dyno. Could it be excessive blowby because of a ring sealing problem? One way to find out is to measure crankcase blowby.

A blowby flow meter can tell you precisely how much blowby is occurring inside the engine. Unlike a cranking compression test or a static leakdown test, a blowby test actually measures the volume of gases that are entering the crankcase past the piston rings. The flow meter allows you to measure blowby from any engine speed, all the way from idle to wide-open throttle.

A blowby test requires a blowby flow meter. The meter measures airflow, and is attached to either the crankcase vent on a valve cover breather, or the PCV valve fitting. On a V6 or V8 engine, the opening on the opposite valve cover must be temporarily blocked so all the airflow from the crankcase will flow past the meter.

When the engine is running, all blowby that leaks past the rings will flow through the crankcase, out the valve cover opening and through the blowby flow meter sensor. The meter outputs an analog voltage signal that ranges from zero to five volts. The display can then be converted into units that show you the volume of airflow per unit of time. Most engine builders typically display the reading in cubic feet per minute (cfm), though heavy-duty engine builders more often use cubic feet per hour (cfh).

One supplier of blowby flow meters said contrary to what many people think an engine typically has more blowby at idle than at higher rpms. As the speed goes up, the rings actually seal better and blowby drops.

How much blowby is normal? Dividing an engine’s maximum horsepower output by 50 will give you a ballpark number for how much blowby you would normally expect to see. For example, a street performance engine that makes around 500 horsepower will typically have about 10 cfm of blowby with conventional pistons rings and ring end gap tolerances. Higher performance engines that are built to tighter tolerances will usually have less blowby, as might those with gapless piston rings. An 800 to 900 horsepower NASCAR motor, for example, might only have 5 cfm of blowby.

Less blowby means more usable horsepower. Being able to baseline the actual blowby in an engine means you can then go back and try different ring configurations, ring types (conventional or gapless), different ring end gap settings and cylinder wall finishes to see which combination gives the best seal and the least amount of blowby.

Measuring blowby has been one of the best kept secrets with performance engine builders because it allows them to see how well the rings are or are not sealing. It also allows them to detect any ring flutter that may be occurring within a particular rpm range, and to then change the mass or end gaps of the rings to minimize the problem.

You May Also Like

Supercharger Pros And Cons

Customers generally look to superchargers for the instant throttle response, not fuel economy.

Superchargers are synonymous with making horsepower, especially in drag racing, gaining popularity and recognition as a viable power adder. However, they’re not the best option for saving fuel.

While most automakers are currently fascinated with employing turbochargers to make up for lost horsepower due to lower-displacement engines, do superchargers have a place in the current automotive climate? Indeed, this power-adder is more commonly found in the performance arena, because it produces power at lower rpm and comes in a smaller package than a turbocharger. But there are some downsides.

Continental Releases 67 New Part Numbers

Twenty-two new import part numbers, as well as 39 new pulley and tensioner part numbers, are immediately available.

Standard Motor Products Introduces 268 New Numbers

The release provides new coverage in 75 product categories and 80 part numbers for 2023 and 2024 model-year vehicles, SMP said.

Toyota Explores Lithium-Ion Battery Recycling

The joint research project seeks to utilize a new process for recovering critical battery materials.

Ignition Coil Output

To see inductance inside the primary windings, use an amp probe placed around the positive wire for the ignition coil.

Other Posts

Plastic Timing Chain Guides

Timing chain guides are designed to wear, but the guides are designed to last the engine’s life.

Honda to Establish EV Value Chain in Ontario, Canada

It will strengthen EV supply system and capability with an eye toward a future increase in EV demand in North America, Honda said.

PRT Launches 30 New Complete Strut Assemblies

The new items represent more than 10 million vehicles in new coverage, PRT said.

BCA Bearings Unveils 2024 Endless Summer Promotion

The Endless Summer promotion runs from May 1 through June 30, 2024.