Tech Tip: Wave Dynamics for Headers and Pipes – UnderhoodService

Tech Tip: Wave Dynamics for Headers and Pipes

Depending upon the market to which an import shop might be catering, the term "performance exhaust" can have two different meanings. The first market actively seeks out the throaty rumble and chrome-plated look as part of the street-driving scene. The second market installs an exhaust system that produces the most horsepower for a performance application. Sometimes the two markets are identical and sometimes they're not.

To better explain the difference between appearance and function, let’s look at how the intake, compression, power and exhaust strokes really work in a modern Otto cycle engine. The high-speed power output of a naturally aspirated engine depends upon the length or duration in crankshaft degrees of the intake and exhaust valve opening events. Air flow is generally increased by opening the intake and exhaust valves early and closing them later during each combustion cycle.

Increasing valve open duration times also increases valve overlap. When the piston reaches top dead center (TDC) as it travels from the exhaust stroke to the intake stroke, the timing events of the intake and exhaust valves will “overlap,” leaving both valves slightly open at the same time. Exhaust tuning in a naturally aspirated engine depends largely upon how much valve overlap is present at TDC. The longer the intake and exhaust valves remain off their seats, the greater the valve overlap between the intake and exhaust valves and the greater the advantage that can be gained by installing a performance exhaust.


In general, the exhaust valve opens before the piston reaches bottom dead center to release the exhaust gas pressure remaining at the end of the power stroke. When the exhaust valve opens, a high-velocity pressure wave is created in the exhaust port and exhaust manifold as the high-pressure exhaust gases exit the cylinder. The intensity of this pressure wave depends largely on when the exhaust valve opens and how great the gas pressure might be in the cylinder. Consequently, the earlier the exhaust valve opens and the greater the remaining gas pressure in the cylinder, the greater the magnitude of the exiting pressure wave.

Because this exiting pressure wave creates a negative pressure differential in its wake, the exit of the exhaust gas from the cylinder tends to draw the intake charge into the cylinder. In cases of extreme valve overlap, a “scavenge” effect might draw a slight amount of the intake charge into the exhaust stream at low crankshaft speeds.

In instances where the exhaust gas velocity at the exhaust port might prematurely decrease, a slight amount of exhaust gas might “revert” or be drawn back into the cylinder. This “reversion” effect dilutes the intake charge and causes the engine to become inefficient at low crankshaft speeds and helps to create the rough idle characteristics of a performance camshaft.

For optimum exhaust efficiency, it’s obvious that the velocity of the exhaust gas must remain high as the gas exits the exhaust valve and port. Due to normal turbulence in the gas and the natural cooling of the exhaust gas, the pressure wave rapidly diminishes as it leaves the exhaust port.

Builders of “tuned” exhaust systems attempt to maintain the velocity of the exhaust gas pressure wave by carefully contouring the exhaust port and exhaust manifold “header” pipe to reduce turbulence. The exhaust port and header pipe diameter must be large enough to prevent restriction, but small enough to maintain gas velocity.

Some performance exhaust builders “pair” the header pipes to enable a cylinder on the exhaust stroke to help evacuate exhaust gases from a companion cylinder going onto the intake stroke. Four cylinders might be configured into two pairs. This “paired” pipe configuration would be expressed as 4-2-1 or, four cylinders paired into two pipes that are, in turn, paired into a single exhaust pipe or common “collector.” A four-cylinder engine with four equal-length pipe runners terminating into a common collector would be expressed as a 4-1 configuration. In general, the 4-2-1 configuration might develop more low-speed torque than the 4-1 configuration.

Increasing exhaust manifold pipe diameters above an optimum size causes the exhaust gas pressure wave to rapidly dissipate and lose its effectiveness in helping draw the intake charge into the cylinders. In general, higher engine speeds require slightly larger pipe.


The words “in general” have been liberally distributed throughout this article simply because seemingly minor exhaust system changes can greatly affect electronic engine management functions. For example, OBD II-compliant vehicles must meet specific exhaust system design parameters to prevent setting false  trouble codes.

Engine management systems using an electronic airflow sensor can calculate air/fuel ratio by measuring the exact weight of air flowing into the engine. Speed-density engine management systems, on the other hand, might use a combination of engine speed, throttle opening, barometric pressure, intake manifold vacuum, coolant temperature and intake air temperature values to estimate the weight of intake air flowing into the engine. Installing a performance exhaust might reduce exhaust backpressure enough to cause the PCM to perform an inaccurate calculation of air flowing into the engine. The vehicle might therefore experience driveability and emissions failure issues caused by an inaccurate air flow calculation. 

You May Also Like

E-15 Ethanol Damage to Fuel Pumps

One of the problems with ethanol is how it reacts to water in the air and in the tank.

In the next few months, you will be hearing a lot about E-15 summer-blend fuels making their way to gas pumps across the country. E-15 uses more ethanol in its blend to reduce our dependence on fossil fuels. No matter your political view, you must wonder what this means for engines.

Oxygen Sensor Questions Answered

If an O2 sensor is not reading properly or is borderline, it should be replaced regardless of its age or mileage.

Managing (DPF) Diesel Particulate Filter Regeneration Cycles

The DPF is designed to store the soot and ash, to later burn them off during a regeneration cycle.

Ultimate Underhood – Gasoline Particulate Filters

Just like a DPF, a gasoline particulate filter (GPF) traps and stores soot particles in the exhaust stream.

Why O2 Sensors Fail To Calculate Exhaust Levels Over Time

As miles accumulate, O2 sensors effectively “catch a cold,” meaning they can’t breathe like they should.

Other Posts

Exhaust Gas Recirculation Operation and Diagnostics

Since exhaust gas does not burn, this lowers the combustion temperatures and reduces NOx emissions from the engine.

Domestic Gasoline Engine Oil Specifications

If it’s been more than a year since last oil change, the IOLM will display a reminder message, regardless of mileage.

EPA vs California Emissions Packages (VIDEO)

What’s the difference between EPA and California emissions packages? This video is sponsored by AP Emissions.

Checking Your Fuel (Video)

Fuel systems can have many possible issues to diagnose. This video is sponsored by AP Emissions.