Tire Tech – UnderhoodService

Tire Tech

Coupled Forces

Why using less weight is not a shortcut

In our July issue on page 26, the article titled “Less Weight, Great Balance” (or at www.brakeandfrontend.com) answered a lot of questions, but it also brought up some new ones. The article was on the new technology that many new balancers are featuring that can reduce the amount of weight a tire balancer uses.

The technology comes at a time when lead weights could be phased out in the next two years. Replacement weights will be more costly for shops. Also, when was the last time you were able to increase your prices for balancing?

But, the technology is showing that a better balance can be achieved with less weight. The technology works by giving the balancer software that can analysis wheel forces and rationalize the weight placement in a manner that older balancers could not. Here are two questions purposed be a few of our readers.

”What is the difference between forces and the associated correction weight used to balance?”

Keep in mind that as a force remains constant, the correction weight size must change as a new correction weight location is chosen. The correction weights must become larger or smaller as the distances, widths and diameters of the weight locations change. A good analogy is like having to pull on a short wrench harder to loosen a nut because it is shorter than a socket with a long ‘breaker’ bar. Flangeless wheel designs are proliferating. Many modern allow wheels have rim flanges no longer used for correction weight, thus creating smaller distances apart from each weight. Smaller distances between weights can dramatically increase the amount of weight required when making the ‘couple’ balancing correction. Also, today’s tire sizes and assembly weight vary dramatically and are also heavier, which further increases the amount of balance weight required.

It’s interesting to point out that tire and wheel static force (shake) is greatly affected by small amounts of change in correction weight. The couple force (wobble), is NOT greatly affected by small amounts of change in correction weights. In fact, unlike static force correction, large amounts of correction weight must be used to make small changes in couple force.

“Why has computer wheel balancing changed now….after doing it the same way for almost 30 years?”

Unlike wheels and tires commonly used during the 1970s and 1980s (when electronic balancers were introduced), today’s tire sizes and assembly weights vary dramatically and are now heavier which increases the amount of balance weight required. Furthermore, flangeless wheel designs are proliferating. Rim flange locations are often no longer used for the clip-on correction weight.

Using tape-on weight creates smaller distances apart from each weight which dramatically increases the amount of weight when making ‘couple’ balancing corrections. The new feature and software takes this into account. The proliferation of designs now reveals that balancing in the old way wastes time and money. Its not that the old way is wrong … it’s just not necessary to do it the sane old way wasting time and money. Today’s computers, if engineered well, use their processing power to accomplish benefits which used to be unattainable before the computer existed.

If you’re in the market for a new wheel balancer, you should look into this. You will find that your shop operators actually prefer its new “ease of use” and the fact that there have actually been steps removed to simplify the balancing process. Your operators will also be doing a better job without knowing it. Procedures that were used by some to short-cut, bypass or waste time have also been removed.

You May Also Like

How Ignition Coils And Plugs Find The Path Of Least Resistance

No matter if it is the secondary or primary side of the coil, inspecting the grounds should be one of the first tests.

Electricity is always looking for the path of least resistance to find ground in a circuit. This basic fundamental of direct current (DC) electricity governs how engineers design any circuit. The rule means that on one side of a circuit you have positive electricity and the other you have a ground. In between, you have a load like a motor, solenoid or other components that change the electricity into work or another form of electricity. If all or just some of the electricity can go to ground before reaching the component, the electrical part will malfunction. This basic principle of electricity has a direct connection to how the primary and secondary windings of an ignition coil operates.

Ford Adaptive Cruise Control Alignment Process

Follow these steps for proper horizontal alignment of the cruise control module radar sensor.

Chrysler’s Totally Integrated Power Module Simplifies Circuits

The symptoms of a failing TIPM can vary depending on the vehicle. Check out your options for this repair.

Trakmotive Tech Tip: Window Regulator Installation

Here are eight tips to make your next window regulator replacement easier.

Multi-Spark Ignition Systems

You may have seen the stories about plasma or laser ignition systems that promise to give new life to the internal combustion engine. But while these ignition systems have yet to make it to market the latest ignition innovation still uses a coil and spark plug.

Other Posts

Power Window Regulator and Motor Service

Power windows are great as long as they roll up and down when commanded to do so.

Caring For AGM And Flooded Car Batteries

Faulty battery cables, if loose, corroded, or damaged, can lead to power drainage.

Battery Charging and Diagnostics

Here are six tips to use when diagnosing a vehicle with a dead battery. 

Bolster Your Steering and Suspension with Delphi!

A vehicle’s steering and suspension system is integral to its ride, handling, safety, and must always be up to the job–that’s where Delphi comes in. All Delphi chassis parts undergo rigorous dimension, material, durability, temperature, and performance tests to ensure they meet or exceed OE specifications at every turn. Because Delphi’s debut in steering and