The PCM Relies on Good Information from the Oxygen Sensors

Tech Tip: The PCM Relies on Good Information from the Oxygen Sensors

Do you know your oxygen sensors? Oxygen sensors have been used for more than a quarter of a century, dating back to 1980 when the first computerized engine control systems appeared. The oxygen (O2) sensor is part of the fuel management system. It monitors unburned oxygen in the exhaust. The powertrain control module (PCM) uses this information to determine if the fuel mixture is rich (too much fuel) or lean (not enough fuel) ....

By Larry Carley
Technical Editor

Do you know your oxygen sensors? Oxygen sensors have been used for more than a quarter of a century, dating back to 1980 when the first computerized engine control systems appeared. The oxygen (O2) sensor is part of the fuel management system. It monitors unburned oxygen in the exhaust. The powertrain control module (PCM) uses this information to determine if the fuel mixture is rich (too much fuel) or lean (not enough fuel).

To provide the best performance, fuel economy and emissions, the PCM has to constantly readjust the fuel mixture while the engine is running. It does this by looking at the signal from the O2 sensor(s), and then increasing or decreasing the on-time (dwell) of the fuel injectors to control fuel delivery.

INTERNAL HEATERS
Oxygen sensors don’t produce a signal until they are hot, so the O2 sensors in most late model vehicles have an internal heater that starts heating up the sensor as soon as the engine starts. Older, first-generation O2 sensors lacked this feature and took much longer to reach operating temperature, which increased cold start emissions.

Once the sensor is hot, a zirconia-type O2 sensor will generate a voltage signal that can range from a few tenths of a volt up to almost a full volt. When there is little unburned oxygen in the exhaust, the sensor usually generates 0.8 to 0.9 volts. The PCM reads this as a “rich” signal, shortens the duration of the fuel injector pulses to reduce fuel delivery, and leans out the fuel mixture.

When there is a lot of unburned oxygen in the exhaust — which may be from a lean fuel mixture, but can also occur if the engine has a misfire or compression leak — the O2 sensor will produce a low voltage signal (0.3 volts or less). The PCM reads this as a “lean” signal, increases the duration of the injector pulses, and adds fuel to enrich the fuel mixture.

A slightly different variation on this is the titania-type O2 sensor. Used in some older Nissan and Jeep applications, this type of sensor changes resistance rather than producing a voltage signal.

In recent years, the design of O2 sensors has changed. The ceramic thimble-shaped element in zirconia-type O2 sensors has been replaced by a flat strip ceramic “planar” style sensor element.

The basic operating principle is still the same (the output voltage changes as O2 levels in the exhaust change), but the new design is smaller, much more robust and faster to reach operating temperature. You can’t see the difference from the outside because the tip of the sensor is covered with a vented metal shroud, but many O2 sensors from 1997 and up use the planar design.

Another change has been the introduction of “wideband” O2 sensors, which are also called “Air/Fuel” or A/F sensors. This type of O2 sensor also uses a flat strip ceramic element inside, but it has extra internal circuitry that allows the sensor to measure the exhaust air/fuel ratio with a much higher degree of precision. It can tell the PCM the exact air/fuel ratio, not just a gross rich or lean indication as other O2 sensors do.

CATALYTIC MONITORING
In 1996, vehicles also began using oxygen sensors to monitor the operation of the catalytic converter. A “downstream” O2 sensor is placed either in or just behind the converter to monitor oxygen levels after the exhaust had reacted with the catalyst.

If the operating efficiency of the converter drops below a certain threshold that might cause an increase in emissions, it sets a diagnostic trouble code (DTC) for the converter and turns on the Check Engine Light.

First-generation O2 sensors typically have a limited service life, and may need to be replaced for preventive maintenance somewhere between 50,000 and 80,000 miles. O2 sensors on 1996 and newer vehicles typically have a much longer service life of 100,000 miles plus, and do not have to be replaced unless they have been contaminated or damaged.

When O2 sensors get old, they can become sluggish and slow to respond to changes in exhaust oxygen levels. Typical symptoms include a drop in fuel economy and higher exhaust emissions.

A bad O2 sensor should not affect engine starting, cause a misfire (unless the spark plugs become carbon fouled), or cause engine stalling or hesitation problems. A sluggish or fouled O2 sensor will typically read low (lean) and cause the engine to run rich.

O2 sensors can be fouled by silicates if an engine has an internal coolant leak and the cooling system contains a conventional antifreeze with silicate rust inhibitors.

The O2 sensor can also be contaminated by phosphorus and zinc from motor oil if the engine has an oil consumption problem (worn valve guides or piston rings).

If the heater circuit inside the O2 sensor fails, or the sensor stops producing a signal due to an internal failure or a wiring fault (a loose or corroded wiring connector), it will usually set an O2 sensor code (P0130 to P0147).

The codes can be read by plugging a scan tool into the vehicle’s diagnostic connector. But many times, other engine problems will set codes that may seem to indicate a bad O2 sensor, but in fact do not.

A P0171 or P0174 lean code, for example, means the O2 sensor is reading lean all the time. The real problem may not a bad O2 sensor, but possibly an engine vacuum leak, low fuel pressure or dirty fuel injectors that are causing the engine run lean. An engine misfire, leaky exhaust valve or a leak in the exhaust manifold gasket that allows air into the exhaust may also cause this type of code to be set.

If an O2 sensor has failed and needs to be replaced, some aftermarket replacement sensors require splicing the sensor wires to accommodate all the different OEM connector styles. This type of O2 sensor provides greater coverage with fewer part numbers.

Others come with the same style connector as the original and are easier to install, but require many more part numbers for the same coverage.

Ever wonder what causes O2 sensors to fail? As O2 sensors age, they slow down. But this usually isn’t a factor until the sensor has upwards of 75,000 or more miles on it. So when an O2 sensor fails prematurely, the cause is often contamination.

Contaminants can come from a number of sources. If the engine has an internal coolant leak due (a crack in the combustion chamber or a leaky head gasket), and the coolant contains silicate corrosion inhibitors (which conventional green coolants do but long life orange coolants such as Dex-Cool do not), the silicates can pass into the exhaust and contaminate the O2 sensors.

Another source of contamination is the anti-wear ingredients in ordinary motor oil. The amount of phosphorus and zinc in motor oil has been reduced in recent years to reduce the risk of O2 sensor and catalytic converter contamination.

Every engine uses a small amount of oil, and over time the contaminants can add up. As the engine accumulates miles, and the valve guides, rings and cylinders start to wear, oil consumption goes up. Consequently, in a high mileage engine that is using oil, phosphorus and zinc contamination of the O2 sensors and catalytic converter can be a problem.

If the O2 sensors are sluggish or have failed, they obviously need to be replaced. But replacing the O2 sensors will only temporarily restore the fuel feedback control system. Unless the oil burning is eliminated, the new O2 sensors will eventually suffer the same fate. Same for a fouled catalytic converter.

When an O2 sensor is contaminated, it may not react very quickly to changes in the air/fuel mixture. Or, the sensor may read low (lean) all of the time, causing the PCM to add to much fuel. The result is reduced fuel economy and higher emissions.

The U.S. Environmental Protection Agency says bad O2 sensors account for a high percentage of emission test failures. So if the Check Engine light is on and there’s an O2 code or a lean code, chances are the O2 sensors may need to be replaced.

You May Also Like

Mazda Tech Tip: Sulfur Or Rotten Egg Smell/Odor From The Exhaust

On some Mazda vehicles, a sulfur smell or rotten egg odor may be noticed coming from the exhaust system. The odor is usually noticed after a cold start, fast idle, extended periods of idling and full-throttle acceleration. The sulfur smell is not an indication of an engine concern and will not cause reduced driveability or durability of the engine or any of its emission components.

On some Mazda vehicles, a sulfur smell or rotten egg odor may be noticed coming from the exhaust system. The odor is usually noticed after a cold start, fast idle, extended periods of idling and full-throttle acceleration. The sulfur smell is not an indication of an engine concern and will not cause reduced driveability or durability of the engine or any of its emission components.

Poor Engine Performance Linked To Converter Failure

Today’s modern vehicles are equipped with a sophisticated emissions control device. These fail when the engine is not tuned up, as this leads to overworking the converter, overheating and possible clogging.

VIDEO: Detecting Leaks With A Scan Tool?

Andrew Markel explains how a scan tool can be used to detect a leak in the exhaust manifold. Sponsored by Auto Value and Bumper to Bumper.

scan-tool-exhaust-manifold-video-featured
Diesel Exhaust Particulate Filters: How Do They Work, What Do They Do?

The Diesel Particulate Filter (DPF) is a ceramic filter that has thousands of tiny channels or honeycomb-shaped openings that trap the soot onto the channel walls and prevent the particulate matter (down to 1 micron) from exiting out the tailpipe. The honeycombed inner structure is covered with a layer of a chemical catalyst that contains small amounts of precious metals, usually platinum or palladium.

Oxygen Sensor And Catalyst Efficiency

The catalyst efficiency monitor verifies the catalytic converter is operating at a high enough efficiency rating to keep exhaust emissions within the predetermined values. The PCM compares the signals from the upstream and downstream oxygen sensors to determine the state of the converter. These “tests” are called the readiness monitors. 

Other Posts

VIDEO: Oxygen Sensor Operation Modes

Andrew Markel explains the difference between closed and open loop operations, and which is more efficient. Sponsored by Bosch Automotive Service Solutions.

oxygen-sensor-operation-modes-video-featured
VIDEO: Thimbal And Planar Oxygen Sensors

Andrew Markel goes over the composition of two types of oxygen sensors with a brief history into each. Sponsored by Bosch Automotive Service Solutions.

thimbal-planar-wideband-oxygen-sensor-video-featured
VIDEO: Nissan Maxima Mass Air Flow Sensor Codes

Andrew Markel explains how a mass air flow code and an oxygen sensor code on a Nissan Maxima can be solved with one simple check. Sponsored by Nissan.

nissan-maxima-mass-air-flow-video-featured
VIDEO: Slow Or Lazy Oxygen Sensor Maintenance

Andrew Markel explains how coolant leaks and oil consumption can lead to a slow, lazy or dead oxygen sensor. Sponsored by Robert Bosch.

slow-lazy-oxygen-sensor-featured-video