Nissan Variable Compression Engine

Nissan Variable Compression Engine

The new Nissan 2.0 L VC-Turbo (Variable Compression Turbo) offers similar performance figures to the 24-year-old 3.5 L V6 that it replaces, while providing 4-cylinder fuel economy. The first vehicle to receive the engine in the Nissan lineup will be the 2019 Altima SR. While it might be a few years before this engine is in your bays, the preparation and training needs to start now, not when you are stumped with a problem.


The new Nissan 2.0 L VC-Turbo (Variable Compression Turbo) offers similar performance figures to the 24-year-old 3.5 L V6 that it replaces, while providing 4-cylinder fuel economy. The first vehicle to receive the engine in the Nissan lineup will be the 2019 Altima SR. While it might be a few years before this engine is in your bays, the preparation and training needs to start now, not when you are stumped with a problem.


What sets the VC engine apart is the world’s first production variable-compression turbo engine. The technology was more than 20 years in development and is a breakthrough in combustion engine design as it continually adjusts its compression ratio to optimize power and fuel efficiency. It is projected to offer a double-digit percentage increase in fuel economy.

The VC-Turbo changes its compression ratio through an advanced multi-link system that continuously raises or lowers the pistons’ reach to alter the compression ratio for varying loads and engine speeds. A high compression ratio provides greater efficiency, but, in certain applications, it poses the risk of premature combustion (knocking). A low compression ratio allows for greater power and torque and prevents knocking.


As the angle of the multi-link arms changes, it adjusts the top-dead-center position of the pistons and the compression ratio with them. An eccentric control shaft changes the compression ratio of all the cylinders at the same time. As a result, the engine capacity varies between 1,997 cc (for a low 8:1 ratio) and 1,970 cc (for a high 14:1 ratio).

You May Also Like

Beyond the Warranty

What does it take to keep a car going for 120,000, 180,000 or 250,000 miles? The key is maintenance and inspection. 

Step up maintenance to go farther

What happens after the bumper-to-bumper warranty and powertrain warranty wear out? If you look at any factory-recommended service intervals, after 100,000 miles they cease to exist.

What does it take to keep a car going for 120,000, 180,000 or 250,000 miles? The key is maintenance and inspection. 

Misfire Codes P0300, P0301-P0312 and P0313+P0314

The only way to clear the code is to use a crankshaft position relearn with a scan tool.

What Caused The Turbo To Fail?

Up to 50% of turbocharger failures are due to oiling problems.

Valve Lifter Technology

Hydraulic lifters are precision-fit assemblies.

Supercharger Pros And Cons

Customers generally look to superchargers for the instant throttle response, not fuel economy.

Other Posts
Inspection Tips For Chain-Driven Water Pumps

If one water pump fails sooner and is replaced without an investigation, the new pump is likely doomed.

Water pump feature
It’s Got Spark!

Why can’t you trust some spark tests?

Belts and Pulley Alignment

A misalignment of the plane of the belt can occur when a pulley is not parallel to the other pulleys on the belt drive system.

Diagnosing Misfires

What if there are no codes and a misfire is intermittent? This is where it gets complicated.