Finding The Leak: Detecting Small EVAP Leaks

Finding The Leak: Detecting Small EVAP Leaks

Leaking vapors of fuel are more destructive to the environment than tailpipe emissions. The vapors from an Evaporative emissions system (EVAP) contain volatile organic compounds that can cause health problems and contribute to haze and smog in some cities. In China, much of the pollution in cities is caused by unburned fuel vapors.

Leaking vapors of fuel are more destructive to the environment than tailpipe emissions. The vapors from an Evaporative emissions system (EVAP) contain volatile organic compounds that can cause health problems and contribute to haze and smog in some cities. In China, much of the pollution in cities is caused by unburned fuel vapors.

EVAP systems are able to contain evaporative emissions so that they can be burned inside the combustion chamber. Also, the system has become better at detecting leaks. But, with better onboard leak detection comes more difficult leaks to find.

On its own, any leak detection device can be a powerful tool to detect leaks. In the wrong hands, using these devices can lead to comebacks and parts being replaced needlessly. But, when one of these devices is paired with service information, training and most importantly, a scan tool, it can lead to a more profitable and productive diagnostic process.

Just connecting the leak detection device to the EVAP test port or gas filler neck and cranking up the pressure to look for leaks is not the proper way to test the system. You will end up with a customer back in your shop with the same code, or you could wind up repairing leaks that are not leaks detectable to the system.

In order to test for leaks to resolve a code, you must think like the EVAP system and treat every EVAP leak like a crime scene. The second a hose is nudged or a connector is disturbed, a leak could be caused or sealed. When this happens, it could be difficult to confirm the source of EVAP code — in other words, the crime scene is now contaminated. Using a leak detection device is like dusting for fingerprints.

Decay
OBD-II evaporative emissions testing uses vacuum or pressure decay to measure leaks. In normal operation, the EVAP system performs testing by closing vent and purge valves to achieve the specified level of either pressure or vacuum, and then measures how much is lost over time. The “decay” is measured with a pressure sensor.

Some older systems use a bladder or diaphragm calibrated to detect a .0014” to .0020” leak. These systems then measure the amount of time it takes the device to react to vacuum or pressure and close or open an electrical circuit. If it takes too little time to make or break a connection, it would indicate a leak above the mandated size in the system and whether it is a gross leak or small leak. Later systems use pressure sensors mounted in the tank.

Pressure or vacuum for on-board EVAP testing can be generated a number of ways. A small electrical or vacuum pump can be used to create positive or negative pressure. The other way is to use changes in the temperature of the tank to generate vacuum. This is typically called “key-off” testing and requires certain conditions to complete the test. It also requires a few more sensor inputs and communication to perform the test and reset the emissions monitor. Some systems use algorithms of throttle position/load to determine how much fuel is being displaced by the pump, and the vacuum generated to detect leaks when the vehicle is running. Also, ambient temperature and tank level play a critical role.

Modern systems use multiple tests to determine if there is a leak before setting a code. Most systems will do a quick check during start-up or at a specific speed to test the integrity of the EVAP system. This check will catch large leaks and test the function of the valves and sensors. Key off testing can be used to find smaller leaks more accurately.

For some key-off tests to be completed, conditions for ambient temperature, length of time parked and fuel level must be just right. Most late-model vehicles use key-off “natural” vacuum decay testing because it can accurately test for smaller leaks. This can prevent false codes from being set and the OEM from having to pay for excessive diagnostic warranty time.

Pressure
The key thing to remember when testing for a leak with a leak detection device is finding the right pressure. Connecting a leak detection device and cranking up the pressure to the highest setting is not a valid test. Often it will give you false positives and cause leaks in items that were not leaking in the first place. This can result in replacing components unnecessarily and not uncovering the real leak. Often, high pressure will cause leaks from the charcoal canister’s outside air intake valve and filter.

The canister will be replaced and the real leak will go undiagnosed. Once the EVAP system is starts completing key-off tests, the vehicle will be back with the same problem.

Scan Tools
Modern systems have up to three fuel vapor circuits in the EVAP system that are used to purge, isolate, vent and test the system for leaks. These solenoids are controlled by a module and can generate codes if an open or short is detected, or if an action did not generate the expected result for the EVAP sensor in the tank.

In order to test the entire system, it is necessary to set the positions of the purge, vent and other valves to fully seal the system. To do this requires a scan tool that can bi-directionally use Mode $08 data to control the EVAP solenoids. On some non-factory scan tools, it may take some time to find the correct menu to control the EVAP system.

Another advantage of a scan tool is using Mode $06 data to monitor pressure or vacuum sensor data from the EVAP pressure sensor. This information can be used to double-check the information coming from the leak detection flow meter.

You May Also Like

How To Diagnose Slow or Sluggish Oxygen Sensors

When oxygen sensors are tested, manufacturers will introduce small amounts of oil to measure sensitivity.

An engine management system is always trying to find the perfect air/fuel ratio. But it is next to impossible to walk the line between too rich or too lean. With every revolution of the crankshaft, small changes in the air, fuel and operating conditions can cause changes to the oxygen content coming out of the exhaust port.

E-15 Ethanol Damage to Fuel Pumps

One of the problems with ethanol is how it reacts to water in the air and in the tank.

Oxygen Sensor Questions Answered

If an O2 sensor is not reading properly or is borderline, it should be replaced regardless of its age or mileage.

Managing (DPF) Diesel Particulate Filter Regeneration Cycles

The DPF is designed to store the soot and ash, to later burn them off during a regeneration cycle.

Ultimate Underhood – Gasoline Particulate Filters

Just like a DPF, a gasoline particulate filter (GPF) traps and stores soot particles in the exhaust stream.

Other Posts

How-to Complete Emissions Monitors Faster

This video will focus on how a product like CAT COMPLETE can improve the chances of completing the monitors faster. This video is sponsored by Rislone.

EVAP Codes and Fuel Pumps (VIDEO)

Here are three tips can help you avoid having to drop the fuel tank for a second time. Sponsored by Carter Fuel Systems.

Perform OE-Level Analysis With New Diagnostic Tool

Bluetooth-enabled device automatically identifies make, model and year match software.

EVAP Test Late-Model Vehicles with Redline Detection EasyConnect

Technicians can snap the adapters into an easily accessible line, then connect their smoke machine to the EVAP system.