Engineering Better Belt Systems

Engineering Better Belt Systems

When a piston accelerates downward after the ignition of the fuel and air, the crankshaft speeds up and then slows down as it reaches the bottom of the stroke.

You might not be able to see it, but an accessory drive belt is always both speeding up and slowing down. When a piston accelerates downward after the ignition of the fuel and air, the crankshaft speeds up and then slows down as it reaches the bottom of the stroke. These changes in speed are minimal, but big enough to cause problems.

If the pulses are not minimized, they can hammer the belt and the attached rotating components. On a four-cylinder engine, the degrees of rotation between power pulses are greater than on a V8 – so the amount of change in speed on the four-cylinder pulley is greater than on a V6 or V8. This has a direct effect on how the belt system is designed.

The belt drive system is working hardest when the engine is at idle. When the engine is below 1,000 RPM, the alternator, A/C compressor and power steering pump are putting the greatest strain on the belt.

Some of the forces can be taken up by the belt slipping on the pulleys, but slipping causes friction and wear on the belt, as well as flutter. Over time, the slipping can get worse as removal of material from the ribs causes the belt to bottom out.

There are three components that help to keep the belt on the pulleys without slipping. The tensioner, harmonic balancer and decoupler pulley work together to keep the accessory belt system quiet and the belt lasting until the replacement interval.

Tensioner

The tensioner applies force on the belt. Some tensioners have devices that dampen the movement of the spring and arm, helping to keep constant force on the belt even under a wide variety of conditions.

Harmonic Balancer

The harmonic dampener puts a layer of soft material between the crankshaft and outer ring of the pulley. The material helps to dissipate the power pulses and resonant frequencies. While the dampener may only flex one or two degrees of movement, this takes a lot of strain off attached components.

Decoupler Pulley

Some alternators have a decoupler pulley. This device serves two purposes. First, it helps to decouple the pulley from the alternator with a one-way clutch. The decoupler reduces parasitic losses by not having to fight against the momentum of the armature in the alternator while the engine is decelerating and accelerating. Some decoupler pulleys have a spring and friction dampener to reduce vibration. When an alternator decoupler pulley is compromised, it can no longer absorb the same level of abuse, which has a trickle-down effect throughout the system.

Alternator decouplers and pulleys should be inspected every 10,000 miles for wear. Early design versions have a service life of 40,000 to 60,000 miles, with more recent versions lasting more than 100,000 miles.

When inspecting a decoupler or pulley, there are two signs that replacement is needed. First, after shutting down the engine, if there is an audible buzzing, the bearings in the pulley have likely failed. The second sign depends on whether the vehicle has a one-way clutch (OWC), overrunning alternator pulley (OAP) or decoupler (OAD).

With the inspection cap/cover removed and the center locked, turn the pulley or decoupler with the appropriate tool. If it is an OAP or OWC, the pulley can only be turned in the clockwise direction. If it is an OAD, a counterclockwise turn will reveal a noticeable increase in spring force; a clockwise turn will only have slight resistance.

The tensioner, harmonic balancer and decoupler pulley work together to keep the belt in contact with grooves in the pulleys. The three components are engineered together to match the engine. If one part is compromised, all are compromised, including the belt.

You May Also Like

New Oil Specifications

Many 0W16 oils have a new donut certification mark on the bottle called API SN-PLUS and SN-PLUS Resource Conserving.

You may have noticed that some Toyota and Honda four-cylinder vehicles require SAE viscosity 0W16 oil. You may also have noticed it in the catalog pages or on the shelves of your oil supplier. The oil really stands out – the last number is strange because it does not end in a five or a zero. 

Solving Intermittent Overheating

New cooling systems anticipate and influence changes in coolant temperature.

Ignition Systems

The ignition coil is a very simple and robust circuit.

Alternator Testing For No Charge Conditions

Many alternator problems turn out to be nothing more than a bad connection at the alternator or a bad wiring harness.

Lifter Deactivation

The area of contact between the lifters and cam lobes is the highest loaded surface inside an engine.

Other Posts

Engineering Better Belt Systems

You might not be able to see it, but an accessory drive belt is always both speeding up and slowing down.

Battery Charging and Diagnostics

Here are six tips to use when diagnosing a vehicle with a dead battery. 

Diagnosing Crankshaft Position Sensors

Modern engines need to not only know the position of the crankshaft, but the position of the camshafts.

Electronic Throttle Body Service

On most systems, idle speed is completely controlled by the throttle plate angle.