AfterMarketNews Auto Care Pro AutoProJobs Auto-Video.com Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service

Strange Requests At The Service Counter

Sometimes, I have to wonder if certain ­customers’ brains are firing on all cylinders. But as an automotive service professional, I have to maintain a certain level of self-control while answering their questions, even though what they’re...

Read more...

Are All Cars ‘Supercars’ Now?

I attended an open house at Smokey’s Dyno in Akron, Ohio, last month. The shop was filled with Lamborghinis, Jaguars and other high-end cars. It was a great chance to look under the hoods of some supercars. The shop even had a rare McLaren P1 sitting...

Read more...

Documenting Inspections: Are You Leaving Maintenance Dollars on the Table?

How do you translate scribbles on a ­repair order into sales? There is no magic trick involved — the key is to document the vehicle ­inspection process. The more you know about your customers’ vehicles, and the more you are able to document...

Read more...

Mazda: Performing Regular Undercar Maintenance

This month, we’ll take a look at brake and undercar service on the Mazda vehicle lineup, with the footnote that even though this type of work ­becomes routine when you have a preventive maintenance mindset, good work habits from beginning to end are...

Read more...

Import Automatic Transmission Diagnostics

Don’t be alarmed if you pull an automatic transmission trouble code when diagnosing a “check engine” warning light! Since the automatic transmission operation has a major effect on grams-per-mile exhaust emissions, you’re going to see the...

Read more...

Honda: Vehicle Won’t Move or Barely Moves

A customer brings in a vehicle that won’t move forward, ­­backward or both. Check first to see if it grinds or clicks. And does the speedometer read a lot higher than you’re actually going? Chances are the driveshaft is disengaged. This can...

Read more...

TPMS Service Tip: Ask the Right Questions

If there is one piece of major advice for any tire tech facing a TPMS issue, it would be this: Test before you touch, and document the answers you get. Understanding the potential TPMS land mines can save time and money and eliminate frustrations. Get...

Read more...

False ABS Activation After Wheel Bearing Hub Replacement

Vehicles: All ABS-equipped vehicles Condition: Vehicle had wheel bearing hub replaced on one side. Repair Procedure: If you diagnose a bad hub bearing on one side of a vehicle and the ABS wheel speed sensor or tone ring is integral to the bearing,...

Read more...

Are you afraid of selling alignments?

I am starting to notice a trend when it comes to alignments. It’s not the vehicles that are changing, but rather the attitudes toward alignment services — and it happens at independent repair shops, franchise shops and even dealers. The alignment...

Read more...

iATN Exceeds 2 Million Forum Messages

The number of messages in the professional automotive discussion forums of the International Automotive Technicians Network (iATN) exceeded 2 million in early December 2014, with the Shop Management and Technical Discussion forums being the most popular...

Read more...

Diagnosing Starter Misses

Contributing writer Gary Goms was called to a friend’s shop to help with a no-cranking condition on a 2006 Chevy Tahoe. After diagnosing a faulty PCM ground, locating the missing ground proved to be problematic. Find out how Gary solves The Case...

Read more...

Snap-on Adds Diagnostic Calculator To Website

Snap-on announces a new diagnostic calculator feature has been added to its website at http://diagnostics.snapon.com to help automotive repair technicians and shop owners determine how much profit they could be making by using a Snap-on diagnostic platform,...

Read more...

Home Diesel Tech Feature: Taking on Diesel Turbo Service

Print Print Email Email

end of the shaft, in a separate housing, is another wheel with angled blades known as the compressor wheel.

Just like the turbine housing in which the exhaust gas spins the wheel, the compressor housing has an opening to take in fresh air from the air filter as the compressor wheel spins from being connected to the turbine wheel. The fresh incoming air is compressed and forced out of an opening in the compressor wheel housing.

From there the compressed air travels into an intercooler (if equipped) and into the intake manifold. As engine speed increases, the turbine and compressor wheel speed also increases. This forces more compressed air into the intake manifold, which causes a pressure rise, what we refer to as “boost.”

Turbo Upgrade
In the aftermarket, there are so many upgrades for turbos, especially on the mid-size diesel trucks. How do you determine which one is right for your application? One thing that is always a concern is boost, because people associate boost with power.

While this may be true, determining the right turbo goes beyond how much boost you want to run. The first step is to find out how much horsepower you want to produce and make sure this is a realistic figure for the application. In street applications a smaller turbo works best because of its excellent response time, while in racing applications a larger turbo is needed because response time is not as much of a concern. The main concern in racing is optimum power at optimum engine speed. For street applications you’re usually looking for the best all-around performance at various engine speeds.

turbo detail on a gm 2006 duramax 6.6l v-8 engine.When choosing to upgrade the turbo, we often leave this decision to the turbo manufacturer for our application. This is a good thing because the manufacturers have spent many hours and resources on developing their turbos, especially on production vehicles.

However, leaving the designs to the experts doesn’t mean you can’t learn more about what is going on inside the turbo and its effect in producing power (see Figure 1).

First, let’s consider the term “trim.” Trim refers to an area ratio between the turbine and compressor wheels. Since the blades of each wheel are spiral and fan shaped they have two diameters. These two diameters are known as the inducer and exducer. The inducer diameter is where the air enters the wheel, while the exducer diameter is where the air exits the wheel. However, pay attention because this is where it gets tricky!

On the exhaust side in the turbine housing, the inducer is the larger diameter of the turbine blade. This is where exhaust gas is entering the turbine housing. On the compressor wheel the inducer is the smaller diameter of the compressor blade, because this is where filtered outside air enters the compressor housing. On the turbine blade the smaller diameter is the exducer, where the exhaust exits the turbine housing into the exhaust pipe. On the compressor wheel the larger diameter of the blade is the exducer where compressed air exits into the compressor housing to the intake manifold.

This is the formula:
TRIM  = [Inducer2]   x 100         
             [Exducer2]
           = 55mm x 55mm  x 100
              75mm x 75mm
           = 3025  x 100
              5625
TRIM = 54

Turbo Calculations
Here’s an example: Let’s say you have a compressor wheel with an inducer diameter of 55 mm and an ­exducer diameter of 75 mm. Using the formula above, what is the trim of the compressor wheel?

Whether it is the compressor or turbine wheel, the trim can affect performance by shifting the airflow capacity. A higher trim wheel ratio will, in turn, flow more than a lower one, but other factors will influence this, so bigger isn’t always better.

Figure 2Turbo Area
Next is the term known as A/R (Area/Radius). You can actually see this sometimes stamped on the manufacturer’s compressor housing. This is the equation that makes up the geometric shape of the compressor and turbine housings: it is the inlet cross-sectional area divided by the radius from the turbo centerline to the center of that area. It sounds confusing, I know, but Figure 2 provides a better look.

Changing the A/R in the compressor housing really doesn’t affect turbo performance and most manufacturers don’t offer A/R options for the compressor housings, anyway.

The turbine housing, on the other hand, is a different story. This is used to adjust the flow capacity of the turbine, which is what drives the turbine wheel to spin. A turbo with a larger A/R will have a slower rise in boost and operate at higher engine speeds while a lower A/R will have quicker boost rise but suffer from increased backpressure and not operate efficiently at higher engine speeds.

Looking at A/R numbers you can usually see what the intended purpose is. If you have a turbo on your diesel with an A/R of 0.7, you can see that it was meant for great quick boost and street driving compared to if you installed a turbo with an A/R of 1.1.

In today’s light-duty and mid-size diesel trucks, you may see a technology known as VGT, variable geometric turbo. This design allows the angle of the blades to change with engine speed. Manufacturers take the oil pressure used to lubricate the turbo and divert it to a solenoid mounted on the side of the turbo. The solenoid is controlled by the PCM. As engine speed rises, the PCM will command the solenoid to open at a desired rate to change the geometry of the compressor blades.

This is used to operate from no boost at idle to full boost at WOT. Manufacturers use this to help eliminate turbo lag and be more efficient. This way, the compressor wheel in the turbo is not a fixed unit, and can change as the demand for boost changes.

Whether it has been used in normal or in towing applications, drivers should remember to let the engine cool down a little before shutting it down. When a hot turbo is simply shut off, heat soak begins. The heat from the head and the exhaust housing migrates to the center of the turbo. This is where the bearings are and this is the reason the turbo is fed with pressurized engine oil. A hot shut-down can result in oil coking which, in turn, will damage the bearings of the turbo and can result in severe engine damage.

Many people who own diesels don’t realize the effects of hot shut-down, especially when compared to a gasoline engine. One thing that turbo manufacturers have done to combat this problem is to use coolant from the radiator. So not only do you have oil to cool the bearings, but also coolant from the radiator. So the coolant circulates to also help take the heat away in case the person who owns the diesel does not let it cool down.

Some aftermarket companies offer what is called a “turbo timer” that allows a driver to the ignition off, remove the key and lock the doors. The “turbo timer” will continue to let the engine run until the desired exhaust temperature is reached. At this time the engine will shut down and everything will return to normal.

Robert McDonald is owner of Atlantic Engines in Granite Falls, NC, and specializes in high performance diesel and gasoline engines and cylinder heads for street, marine, dirt and drag racing.

The following two tabs change content below.
Underhood Service Staff Writers

Underhood Service Staff Writers

Underhood Service Staff Writers

Latest posts by Underhood Service Staff Writers (see all)

Latest articles from our other sites:

Head Gasket Do’s and Don’ts

DO: Clean the holes. To ensure accurate torque values and to avoid cracking the cylinder block, clean any dust, dirt, oil and fluid from the cylinder block head bolt holes before installing the...More

CARDONE Innovation Team Announces New Products

CARDONE Industries has introduced several new products to its portfolio of automotive replacement parts. Electronic braking units have been added to the company’s remanufactured brakes offering. According...More

Mazda: Performing Regular Undercar Maintenance

This month, we’ll take a look at brake and undercar service on the Mazda vehicle lineup, with the footnote that even though this type of work ­becomes routine when you have a preventive maintenance...More

Import Automatic Transmission Diagnostics

Don’t be alarmed if you pull an automatic transmission trouble code when diagnosing a “check engine” warning light! Since the automatic transmission operation has a major effect on grams-per-mile...More

TPMS Service Tip: Ask the Right Questions

If there is one piece of major advice for any tire tech facing a TPMS issue, it would be this: Test before you touch, and document the answers you get. Understanding the potential TPMS land mines can...More

False ABS Activation After Wheel Bearing Hub Replacement

Vehicles: All ABS-equipped vehicles Condition: Vehicle had wheel bearing hub replaced on one side. Repair Procedure: If you diagnose a bad hub bearing on one side of a vehicle and the ABS wheel speed...More

iATN Exceeds 2 Million Forum Messages

The number of messages in the professional automotive discussion forums of the International Automotive Technicians Network (iATN) exceeded 2 million in early December 2014, with the Shop Management and...More

Loosen Seized Fasteners with Lisle’s Small Fastener Remover

Use Lisle’s Small Fastener Remover (60530) with a pneumatic impact tool to loosen rusted or seized fasteners. A 3/4" open end wrench can be used to turn the socket while impacting the fastener. A...More