AfterMarketNews Auto Care Pro AutoProJobs Auto-Video.com Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service

ASE G1: Drive Belt Inspection, Replacement

The ASE G1 Certification test contains 55 scored questions, plus 10 unscored ­research questions, that cover a range of skills and knowledge related to maintenance and light repairs in engine systems, automatic transmission/transaxle, manual drivetrain...

Read more...

Amateurs and Hacks Provide Job Security For Automotive Service Professionals

Two cars pull up in front of my shop. The drivers didn’t come in, but I heard the commotion from my office window. The boyfriend opens the hood of his girlfriend’s car. They both stare at the engine; she tells the boyfriend that she was supposed...

Read more...

ASE A5: Brake Fluid and Bleeding Sequence

The ASE A5 Test includes a portion on brake fluid, bleeding, flushing and leak testing. You must know how to: • Diagnose poor stopping, pulling, dragging, or incorrect pedal travel caused by problems in the brake fluid; determine needed repairs. •...

Read more...

Inside Import Car Collision Warning, Automatic Braking Systems

Anything that moves under its own power also has to stop, so brakes have been a safety feature on cars since day one. Over the years, technical innovations such as antilock brakes (ABS) have ­improved the ability to stop with minimal skidding on...

Read more...

Intermittent Engine Misfire Analysis

Even for an experienced diagnostic technician, ­attempting to diagnose an intermittent misfire ­condition that occurs only under specific driving conditions can be a frustrating exercise. Let’s begin by getting the basics out of the way. As we know,...

Read more...

Honda: Easy Fix for Engine Noise

We often encounter engines that have a cold-start knock or ticking noise. In this case, the 3.5-L V6 engines installed in various Honda models can make a knocking or ticking noise at idle and only when warm. The cause of the problem is that the rocker...

Read more...

Using Recalls, TSBs as Brake Job Tools

You are getting ready to perform a brake job on a vehicle. While checking the torque specifications on the vehicle, you decide to hit the tab with TSBs and recalls. All of a sudden you are staring at a screen of brake recall notices and TSBs for that...

Read more...

Causes of Clutch Failure: Diagnosing Chatter

One of the most difficult clutch-related problems is chatter. Chatter is sometimes difficult to diagnose because it has many root causes, and some of them may not seem related at first. Chatter can be detected as a pulsing or a grabbing sensation that...

Read more...

GM: Simple Steering Noise Fix

Before you replace that Chevrolet Avalanche steering rack because of a variety of strange noises — wait. There might be a very simple repair. Owners of the GM truck and SUV models listed below may comment that they are hearing a pop, click or clunking...

Read more...

5 Tool Storage Tips

  As a technician, you likely own thousands of dollars worth of tools and equipment, and require tool storage capacity to hold them all, along with carts and accessories to help move those tools around your work area. Here are a few items...

Read more...

Streamlight Donates $75,000 To The Breast Cancer Research Foundation

Streamlight Inc. recently contributed more than $75,000 to The Breast Cancer Research Foundation (BCRF), a not-for-profit organization with a mission to achieve prevention of and a cure for breast cancer. Since 2010, Streamlight has donated $525,000 to...

Read more...

AVI Announces New Live Stream 8 (LS-8) Webcast Event

On Wednesday, Oct. 8, 2014, at 6 p.m. analytical expert Ron Bilyeu will be teaching a free live, online course called “Computer Engine Data – Make Testing Quicker.”   In this webcast, Ron Bilyeu will take online attendees through the...

Read more...

Home Diesel Tech Feature: Taking on Diesel Turbo Service

Print Print Email Email

end of the shaft, in a separate housing, is another wheel with angled blades known as the compressor wheel.

Just like the turbine housing in which the exhaust gas spins the wheel, the compressor housing has an opening to take in fresh air from the air filter as the compressor wheel spins from being connected to the turbine wheel. The fresh incoming air is compressed and forced out of an opening in the compressor wheel housing.

From there the compressed air travels into an intercooler (if equipped) and into the intake manifold. As engine speed increases, the turbine and compressor wheel speed also increases. This forces more compressed air into the intake manifold, which causes a pressure rise, what we refer to as “boost.”

Turbo Upgrade
In the aftermarket, there are so many upgrades for turbos, especially on the mid-size diesel trucks. How do you determine which one is right for your application? One thing that is always a concern is boost, because people associate boost with power.

While this may be true, determining the right turbo goes beyond how much boost you want to run. The first step is to find out how much horsepower you want to produce and make sure this is a realistic figure for the application. In street applications a smaller turbo works best because of its excellent response time, while in racing applications a larger turbo is needed because response time is not as much of a concern. The main concern in racing is optimum power at optimum engine speed. For street applications you’re usually looking for the best all-around performance at various engine speeds.

turbo detail on a gm 2006 duramax 6.6l v-8 engine.When choosing to upgrade the turbo, we often leave this decision to the turbo manufacturer for our application. This is a good thing because the manufacturers have spent many hours and resources on developing their turbos, especially on production vehicles.

However, leaving the designs to the experts doesn’t mean you can’t learn more about what is going on inside the turbo and its effect in producing power (see Figure 1).

First, let’s consider the term “trim.” Trim refers to an area ratio between the turbine and compressor wheels. Since the blades of each wheel are spiral and fan shaped they have two diameters. These two diameters are known as the inducer and exducer. The inducer diameter is where the air enters the wheel, while the exducer diameter is where the air exits the wheel. However, pay attention because this is where it gets tricky!

On the exhaust side in the turbine housing, the inducer is the larger diameter of the turbine blade. This is where exhaust gas is entering the turbine housing. On the compressor wheel the inducer is the smaller diameter of the compressor blade, because this is where filtered outside air enters the compressor housing. On the turbine blade the smaller diameter is the exducer, where the exhaust exits the turbine housing into the exhaust pipe. On the compressor wheel the larger diameter of the blade is the exducer where compressed air exits into the compressor housing to the intake manifold.

This is the formula:
TRIM  = [Inducer2]   x 100         
             [Exducer2]
           = 55mm x 55mm  x 100
              75mm x 75mm
           = 3025  x 100
              5625
TRIM = 54

Turbo Calculations
Here’s an example: Let’s say you have a compressor wheel with an inducer diameter of 55 mm and an ­exducer diameter of 75 mm. Using the formula above, what is the trim of the compressor wheel?

Whether it is the compressor or turbine wheel, the trim can affect performance by shifting the airflow capacity. A higher trim wheel ratio will, in turn, flow more than a lower one, but other factors will influence this, so bigger isn’t always better.

Figure 2Turbo Area
Next is the term known as A/R (Area/Radius). You can actually see this sometimes stamped on the manufacturer’s compressor housing. This is the equation that makes up the geometric shape of the compressor and turbine housings: it is the inlet cross-sectional area divided by the radius from the turbo centerline to the center of that area. It sounds confusing, I know, but Figure 2 provides a better look.

Changing the A/R in the compressor housing really doesn’t affect turbo performance and most manufacturers don’t offer A/R options for the compressor housings, anyway.

The turbine housing, on the other hand, is a different story. This is used to adjust the flow capacity of the turbine, which is what drives the turbine wheel to spin. A turbo with a larger A/R will have a slower rise in boost and operate at higher engine speeds while a lower A/R will have quicker boost rise but suffer from increased backpressure and not operate efficiently at higher engine speeds.

Looking at A/R numbers you can usually see what the intended purpose is. If you have a turbo on your diesel with an A/R of 0.7, you can see that it was meant for great quick boost and street driving compared to if you installed a turbo with an A/R of 1.1.

In today’s light-duty and mid-size diesel trucks, you may see a technology known as VGT, variable geometric turbo. This design allows the angle of the blades to change with engine speed. Manufacturers take the oil pressure used to lubricate the turbo and divert it to a solenoid mounted on the side of the turbo. The solenoid is controlled by the PCM. As engine speed rises, the PCM will command the solenoid to open at a desired rate to change the geometry of the compressor blades.

This is used to operate from no boost at idle to full boost at WOT. Manufacturers use this to help eliminate turbo lag and be more efficient. This way, the compressor wheel in the turbo is not a fixed unit, and can change as the demand for boost changes.

Whether it has been used in normal or in towing applications, drivers should remember to let the engine cool down a little before shutting it down. When a hot turbo is simply shut off, heat soak begins. The heat from the head and the exhaust housing migrates to the center of the turbo. This is where the bearings are and this is the reason the turbo is fed with pressurized engine oil. A hot shut-down can result in oil coking which, in turn, will damage the bearings of the turbo and can result in severe engine damage.

Many people who own diesels don’t realize the effects of hot shut-down, especially when compared to a gasoline engine. One thing that turbo manufacturers have done to combat this problem is to use coolant from the radiator. So not only do you have oil to cool the bearings, but also coolant from the radiator. So the coolant circulates to also help take the heat away in case the person who owns the diesel does not let it cool down.

Some aftermarket companies offer what is called a “turbo timer” that allows a driver to the ignition off, remove the key and lock the doors. The “turbo timer” will continue to let the engine run until the desired exhaust temperature is reached. At this time the engine will shut down and everything will return to normal.

Robert McDonald is owner of Atlantic Engines in Granite Falls, NC, and specializes in high performance diesel and gasoline engines and cylinder heads for street, marine, dirt and drag racing.

The following two tabs change content below.
Underhood Service Staff Writers

Underhood Service Staff Writers

Latest articles from our other sites:

Check Out The October Issue Of ImportCar Magazine

A digital version of the October issue of ImportCar is available on-line. CLICK HERE to access the easy-to-view digital version that features articles on Engine Misfire Analysis, Active Braking Systems,...More

AAPEX Debuts 'Ask Joe' Videos

The Automotive Aftermarket Products Expo (AAPEX) has debuted a series of “Ask Joe” videos to help attendees prepare for AAPEX and grow their business while at the event. AAPEX is slated for Tuesday,...More

Inside Import Car Collision Warning, Automatic Braking Systems

Anything that moves under its own power also has to stop, so brakes have been a safety feature on cars since day one. Over the years, technical innovations such as antilock brakes (ABS) have ­improved...More

Hyundai: Power Steering Oil Pump Whine

Before replacing a power steering oil pump for a whine noise condition, check the oil pump reservoir filter screen for contamination. If the filter screen at the bottom of the oil pump reservoir is clogged,...More

Domestic TPMS Guide

Chrysler TPMS Chrysler uses a Schrader Electronics or VDO TPMS system on just about every late-model vehicle. Chrysler has never used a band sensor in any of its platforms. On some 2004 and 2005 models,...More

Using Recalls, TSBs as Brake Job Tools

You are getting ready to perform a brake job on a vehicle. While checking the torque specifications on the vehicle, you decide to hit the tab with TSBs and recalls. All of a sudden you are staring...More

Snap-on Adds Free VERUS PRO Training Solutions Modules To Website

Snap-on has added free VERUS PRO Training Solutions videos to its website at http://diagnostics.snapon.com/trainingsolutions. The 10 modules are designed to help navigate the features and functionality...More

Newly Redesigned Forward Lift CR14 Four-Post Lift Features Higher Rise, Longer Platforms And Greater Durability

Forward Lift has made several upgrades to its 14,000-lb. capacity CR14 four-post lift to improve operator ergonomics and lift durability. The improvements add rise height and include new lifting components...More