AfterMarketNews Auto Care Pro AutoProJobs Auto-Video.com Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service

ASE A5: Brake Fluid and Bleeding Sequence

The ASE A5 Test includes a portion on brake fluid, bleeding, flushing and leak testing. You must know how to: • Diagnose poor stopping, pulling, dragging, or incorrect pedal travel caused by problems in the brake fluid; determine needed repairs. •...

Read more...

North Dakota Woman Goes From Daycare To Auto Repair

Everyone reading this, raise your hand if you ran a daycare before working in or owning an auto repair shop. Anyone? Well, that’s the story for Elyzabeth Goerger, who was recently profiled in North Dakota’s Prairie Business. Georger is the...

Read more...

South Dakota Tech Program Graduates In High Demand

The automotive repair industry, in certain pockets of the country, has a labor force problem. There either isn’t enough technicians to go around, or not enough properly trained technicians to go around. This isn’t the case in Sioux Falls, SD. What...

Read more...

Honda: Easy Fix for Engine Noise

We often encounter engines that have a cold-start knock or ticking noise. In this case, the 3.5-L V6 engines installed in various Honda models can make a knocking or ticking noise at idle and only when warm. The cause of the problem is that the rocker...

Read more...

Toyota: Rough idle, surging between 500 to 800 RPM

Model: 2005 Toyota Avalon and some models with similar system configurations, such as 2006 Camry models. Condition: The customer ­complains that the check engine light is on, rough idle and engine idle surging between 500 and 800 rpm. The technician...

Read more...

Volkswagen: Engine Does Not Start

Vehicle: 2001 Volkswagen Passat GLX, 2.8L Complaint: The customer says the vehicle will not start. Cause: Confirmed the customer’s complaint and found the vehicle did not start. Connected a scan tool and found the following codes: • 17978...

Read more...

Are You Chasing Weights?

It has happened to all tire techs, probably more than once. You balance a tire, put the weights on, drop the hood again for a check spin — and the balancer comes up asking for more weight. Fine. You add more weight, drop the hood and...it asks for...

Read more...

Cadillac CTS Alignment Spec

The first-generation Cadillac CTS was introduced in 2003 and ended production in the 2007 model year. The Cadillac CTS was built on GM’s rear-wheel drive Sigma platform. The CTS for years 2003-’07 came with two suspension packages­ — standard...

Read more...

Nissan Maxima Brake Job Tips

Called the four-door sports car by Nissan, the 2004-2008 Maxima brake system is easy to service with very few complaints of brake noise or pulsation. The system used the same brake pads, rotors and calipers on all models. There were some changes in...

Read more...

Midtronics Launches Informational Microsite

  Midtronics, Inc. has launched an informational microsite — or mini website — to provide customers with detailed information about the company’s newest diagnostic platform — the DSS-7000 Battery Service Diagnostic System. The microsite...

Read more...

German Tool Specialist KC Tool Announces Addition of Gedore Tools

As of August 1 KC Tool became the first certified reseller of Gedore Tools in the United States already adding more than 2,500 Gedore tools to its selection of German made tools. KC Tool plans to add an additional 6,000 Gedore Tools over the next few...

Read more...

United Stationers Expands Into Auto Aftermarket

United Stationers announced Sept. 11 that its wholly owned subsidiary, United Stationers Supply Co., signed an agreement to acquire MEDCO, a U.S. wholesaler of automotive aftermarket tools and supplies, and its affiliates including G2S Equipment de Fabrication...

Read more...

Home Engine Point of No Return: Returnless Fuel Injection Systems

Print Print Email Email

If you’ve tried to find the fuel pressure regulator on many late-model engines by looking in the engine compartment, you won’t find it there because the regulator has been relocated to the fuel tank. Engines with “returnless” electronic fuel injection (EFI) systems have the regulator inside the fuel tank. The regulator is part of the fuel pump assembly and is usually located downstream of the in-tank fuel filter.

Why have the vehicle manufacturers gone to this type of setup? To reduce evaporative (EVAP) emissions from the fuel system. In 2004, federal emission regulations required lower EVAP emissions. This, in turn, required a change to returnless fuel injection systems on many vehicles.

On a conventional port fuel injection system, fuel is routed to a fuel rail on the engine to supply the injectors. Fuel pressure is controlled by a vacuum-operated mechanical regulator mounted on the fuel rail. Intake vacuum is routed to the regulator through a vacuum hose and pulls against a spring-loaded diaphragm to maintain a preset pressure differential in the fuel system. When intake manifold vacuum is high, excess fuel pressure is vented through the regulator bypass valve and routed back to the fuel tank via a fuel return line. Unfortunately, this carries a lot of engine heat back to the fuel tank and increases evaporative fuel vapor emissions.

Relocating the regulator to the fuel tank eliminates the circulation of fuel between the engine and tank so the fuel stays cooler. It also simplifies the fuel system plumbing by eliminating the return line. Another advantage is that putting the regulator in the fuel tank keeps it away from engine heat and extends its life. The only downside with the returnless EFI setup is servicing the regulator. If the regulator needs to be replaced for any reason, you have to drop the fuel tank to extract the in-tank fuel pump module. The same goes for the fuel filter, which is also located inside the fuel tank with the pump module on most applications.

Where You’ll Find Returnless EFI
Returnless systems are now used on many late-model cars and trucks. The first ones appeared back in 1993 on certain Chrysler V6 and V8 truck engines. By 1998, all Chrysler cars and light trucks had them. In 1996, Toyota introduced its first returnless system, and Honda went returnless in 2001. General Motors and Ford started down the returnless route in 1999, and in 2004, GM went returnless on most of its full-size pickup trucks and SUVs with the Vortec 6000 (LQ4 and LQ9) engines, including the Cadillac Escalade; Chevy Silverado, Suburban and Tahoe; the GMC Sierra and Yukon; and Hummer H2.

Actually, there are two different types of returnless EFI systems in use: mechanical and electronic. In the mechanical systems, a mechanical regulator is mounted on the fuel pump module to provide a more or less constant fuel pressure to the engine. This type of setup works well with a speed-density EFI system that uses throttle position, intake manifold pressure and engine rpm to determine engine load rather than an airflow sensor.

On 1996 Chrysler and Dodge minivans with returnless EFI, the regulator can be serviced by removing the fuel pump module from the fuel tank, then prying back the locking tabs that hold the regulator in its housing. The regulator can then be pried out and replaced with a new one. There are also two O-rings inside the housing that also should be replaced. Forget these, and the system may not hold normal pressure.

Electronic returnless EFI systems also may be referred to as “On Demand” returnless EFI systems because they use a fuel tank pressure sensor to monitor fuel pressure. The PCM varies the speed of the fuel pump to increase or decrease fuel flow using pulse width modulation (PWM) of the pump’s supply voltage. The PCM determines how much fuel is required based on engine load and inputs from its other sensors. This type of system is typically used on an engine that has an airflow sensor to monitor engine load.

2005 Chevy Silverado
On a 2005 Chevy Silverado, for example, the on demand returnless EFI system has a turbine-style fuel pump inside the fuel tank that routes fuel through an in-tank filter to the in-tank regulator. The regulator maintains a preset pressure to the fuel injection system, which is 55 to 62 psi (or 48 to 54 psi on engine VIN code Z). A fuel pressure sensor is mounted on top of the fuel pump module so pressure and flow can be modified as needed. The system has a number of different operating modes:

 

  • Starting Mode: When the ignition is first turned on, the PCM energizes the fuel pump relay for two seconds. This allows the fuel pump to build pressure in the fuel system. The PCM calculates the air/fuel ratio based on inputs from the engine coolant temperature (ECT), mass air flow (MAF), manifold absolute pressure (MAP) and throttle position (TPS) sensors. The system stays in starting mode until the engine speed reaches a predetermined rpm.

     

     

  • Clear Flood Mode: If the engine floods, the engine can be cleared by pressing the accelerator pedal down to the floor and then cranking the engine. When the throttle position sensor is at wide open throttle, the PCM reduces the fuel injector pulse width in order to increase the air/fuel ratio. The PCM maintains this injector rate as long as the throttle stays wide open and engine speed is below a predetermined rpm. If the throttle is not held wide open, the PCM returns to the normal starting mode.

     

     

  • Run Mode: This includes Open Loop and Closed Loop. When a cold engine is first started and is idling, the system begins Open Loop operation. The PCM ignores the signal from the oxygen sensors and calculates the air/fuel ratio based on inputs from the ECT, MAF, MAP and TPS sensors. The system stays in Open Loop fuel control until both front oxygen sensors are hot and producing a varying voltage signal, engine coolant temperature is above a specified temperature, and a certain amount of time has elapsed after starting the engine.

     

    Specific calibration values for these conditions are stored in the PCM’s electrically erasable programmable read-only memory (EEPROM). Once the conditions are met, the system goes into Closed Loop and the PCM starts to calculate the air/fuel ratio and modify the injector on time using inputs from the oxygen sensors and other sensors.

     

  • Acceleration Mode: When the driver pushes on the accelerator pedal, the engine sucks in a lot of air. To keep the engine from hesitating, the PCM increases the pulse width to the injectors to provide extra fuel enrichment.

     

  • Deceleration Mode: When the driver releases the accelerator pedal, air flow into the engine is reduced. The PCM monitors the corresponding changes in the TPS, MAP and MAF sensors. The PCM shuts off fuel completely when decelerating rapidly, and when the vehicle is coasting down with the throttle closed. This saves fuel and prevents damage to the catalytic converters.

     

     

  • Battery Voltage Correction Mode: If battery voltage is low, the PCM compensates for the weak spark delivered by the ignition system by increasing fuel delivery (enriching the air/fuel mixture), increasing engine idle speed and ignition dwell time.

     

     

  • Fuel Cutoff Mode: The PCM cuts off fuel from the fuel injectors when the following conditions are met in order to protect the powertrain from damage and improve driveability: It does this when the ignition is off (prevents engine run-on when the engine is hot); when the ignition is on but there is no ignition reference signal (prevents flooding or backfiring); when the engine speed is too high (rev limiter); when the vehicle speed is too high (speed limiter); and during an extended, high-speed, closed-throttle coast down (reduces decel emissions and increases engine braking).

Diagnosis
Returnless EFI systems are subject to the same problems as any other type of fuel injection system: pump and relay problems, plugged fuel filters, dirty injectors, even bad gas. Consequently, diagnosis is similar.

 

Returnless EFI systems typically operate at a higher pressure than return-type systems. This is necessary to reduce the risk of fuel boiling and vapor lock in the injector supply rail during hot weather (since there is no recirculation of fuel from the engine back to the tank to keep the fuel supply rail cool). Because of this, a returnless EFI system may not perform well if fuel pressure or flow is less than specifications.

Fuel pressure checks on returnless systems can be done in the usual way by attaching a gauge to the service valve fitting on the fuel supply rail, or you can hook up a scan tool and look at the fuel pressure PID to measure fuel pressure. You can also use a fuel pressure gauge to cross-check the accuracy of the scan tool fuel pressure reading (which will tell you if the fuel pressure sensor is out of calibration).

On returnless systems that use pulse-width modulation to vary the speed of the fuel pump, you should be able to read the value of the control signal on your scan tool. Look for a change in the number when engine speed/load changes. No change would tell you there’s a problem with the fuel pressure sensor, or possibly the fuel pump driver circuit in the PCM.

Fuel volume should also be measured if you suspect a weak pump is starving the engine for fuel at higher speeds and loads. A weak pump can often generate enough pressure at idle to meet specifications, but runs short when the demand for fuel goes up. As a rule, a “good” pump will deliver at least 750 ml (3/4 quart) of fuel in 30 seconds.

Service
Low fuel pressure and/or flow can also be caused by a plugged filter, by restrictions in the fuel line, or low voltage to the pump itself. The filters on most returnless EFI applications are “lifetime” filters with no scheduled replacement interval. Under normal conditions, most should last upwards of 100,000 miles, but they won’t last that long if the vehicle has rust or dirt in the gas tank. Replacing the filter requires dropping the tank, removing the module and, in most cases, replacing the entire fuel pump module because the filter cannot be replaced separately. Imagine telling your customer he needs a new fuel filter and it will cost $600 to change it!

If an in-tank filter has become clogged, or the fuel pump has quit, be sure to inspect the inside of the fuel tank after you pull out the fuel pump module. Dirt and sediment can be removed by steam cleaning the tank. But if a metal tank is rusty, replace the tank to prevent a repeat failure of the new pump module.

Something else to watch out for on returnless EFI systems is contaminants in the fuel rail on the engine. The rail is a dead end as far as fuel circulation is concerned. Fuel flows one-way into the rail and does not return to the tank, so any junk that gets past the fuel filter will end up in the rail or injectors. The injector(s) at the end of the fuel rail(s) furthest from the inlet are the ones most likely to become clogged with gunk.

Injectors can be cleaned with fuel tank additives or on-car flushing equipment. But the rail should be removed and cleaned separately if one or more injectors are found to be clogged, or the injectors are being cleaned off-car or are being replaced.

Gasoline that does not contain adequate levels of detergent can allow fuel varnish deposits to build up in the injectors, restricting fuel delivery and causing lean misfire problems. Deposits can also form on the intake valves, piston tops and combustion chamber that adversely affect performance and compression. Most vehicle manufacturers now recommend using “Top Tier” gasolines that contain higher levels of fuel system cleaning additives to keep the injectors clean and to prevent engine deposit buildup. The alternative is to use some type of fuel system cleaner additive in the fuel tank periodically (say every 3,000 to 5,000 miles), or to recommend a periodic fuel injector and engine cleaning. The latter can often restore normal performance and make a noticeable improvement in fuel economy whether an engine has returnless EFI system or not.

 


Did You Know… In the older return-type systems, the fuel pump delivers more fuel to the engine than it actually needs. The excess fuel is then routed back to the fuel tank through a pressure regulator and return line. But in a returnless system, there is no pressure regulator on the fuel supply rail and no return line back to the tank. The regulator is mounted in the fuel tank and is usually part of the fuel pump module.

 

The following two tabs change content below.

Larry Carley

Larry Carley has more than 30 years of experience in the automotive aftermarket, including experience as an ASE-certified technician, and has won numerous awards for his articles. He has written 12 automotive-related books and developed automotive training software, available at www.carleysoftware.com.
  • Art

    Have 2005 Silverado 2WD 24870mi, engine light came on, stopped at an Advance Auto and they checked with a meter stating “It has a vacuum leak”. How many vacuum lines on this engine and would it cost $600 to fix if it is related to the fuel system?

Latest articles from our other sites:

ATP Automotive Introduces New Transmission Filter Kit Packaging

As part of its new brand identity initiative, ATP Automotive has introduced new packaging for its popular transmission filter kits. “ATP transmission filter kits are the preferred choice of professional...More

New Bar's Leaks One Seal Stop Leak Fixes Oil, Transmission And Power Steering Leaks

Bar’s Leaks has combined three of its popular stop leak products into a unique new multipurpose formula that can eliminate engine, transmission and power steering system fluid leaks. New Bar’s Leaks...More

Honda: Easy Fix for Engine Noise

We often encounter engines that have a cold-start knock or ticking noise. In this case, the 3.5-L V6 engines installed in various Honda models can make a knocking or ticking noise at idle and only when...More

Toyota: Rough idle, surging between 500 to 800 RPM

Model: 2005 Toyota Avalon and some models with similar system configurations, such as 2006 Camry models. Condition: The customer ­complains that the check engine light is on, rough idle and engine...More

ASE A5: Brake Fluid and Bleeding Sequence

The ASE A5 Test includes a portion on brake fluid, bleeding, flushing and leak testing. You must know how to: • Diagnose poor stopping, pulling, dragging, or incorrect pedal travel caused by problems...More

Are You Chasing Weights?

It has happened to all tire techs, probably more than once. You balance a tire, put the weights on, drop the hood again for a check spin — and the balancer comes up asking for more weight. Fine....More

Motor Guard Expands Line of Rigid Sanding Blocks

Motor Guard has expanded its line of Super-Rigid Big Block models for fast and aggressive blocking of aluminum or steel. Engineered from super-dense yet light-weight materials, these new sanding blocks...More

Steck’s Axle Popper Helps Break Stubborn Loose Half Shafts

Steck Manufacturing Company has released the Axle Popper (P/N 71415). Break loose half shafts from transaxle on FWD cars using your air hammer. Axle Popper II is Steck’s air tool version of its original...More