AfterMarketNews Auto Care Pro AutoCareCareerHub Auto-Video.com Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service Speedville

South Dakota Tech Program Graduates In High Demand

The automotive repair industry, in certain pockets of the country, has a labor force problem. There either isn’t enough technicians to go around, or not enough properly trained technicians to go around. This isn’t the case in Sioux Falls, SD. What...

Read more...

Automechanika Frankfurt 2014 Wrap Up: Photo Gallery

Aftermarket News Managing Editor Mark Phillips represented the Babcox Media team at Automechanika Frankfurt 2014. You can catch up on a lot of last week's news from the show at Aftermarket News or the Counterman Twitter account or just take a look...

Read more...

Auto Care Marketing: Price Sensitive vs. Fear Sensitive

For 2014, I changed my health care insurance from a traditional plan to a health savings account (HSA). Basically, the first $2,500 (pre-tax) of medical expenses are on me. I was confused at first, but soon found that it did have some entertainment...

Read more...

Volkswagen: Engine Does Not Start

Vehicle: 2001 Volkswagen Passat GLX, 2.8L Complaint: The customer says the vehicle will not start. Cause: Confirmed the customer’s complaint and found the vehicle did not start. Connected a scan tool and found the following codes: • 17978...

Read more...

Audi: Vibrates at Idle

Complaint The customer says that the check engine light is on and that the vehicle vibrates at idle. Cause The customer’s complaint is confirmed, with the vehicle vibrating at idle, but the vibration was not felt at high speeds. A scan tool found...

Read more...

Step-by-Step Lexus Fuel Pump Replacement

We will use a third-generation 2006 Lexus LS430 as our case study for this fuel pump assembly replacement. First, discharge the fuel system pressure, disconnect the negative battery terminal and drain the fuel. Be sure to remove the rear seat cushion...

Read more...

Nissan Maxima Brake Job Tips

Called the four-door sports car by Nissan, the 2004-2008 Maxima brake system is easy to service with very few complaints of brake noise or pulsation. The system used the same brake pads, rotors and calipers on all models. There were some changes in...

Read more...

Get Inside the Mind of a Modern Transmission

The transmission game has changed. Solenoids, sensors and computers have replaced vacuum lines, governors and kick down cables on modern automatic transmissions. The tools have also changed: Scan tools, scopes and meters have replaced pressure and...

Read more...

Saturn: Hesitation Between 35-50 mph

Condition Some customers may comment on a flat spot or hesitation between 35-50 mph (56-80 km/h) speed range. Cause The existing transmission calibration is programmed to maximize fuel economy and requires a greater throttle input than some customers...

Read more...

Midtronics Launches Informational Microsite

  Midtronics, Inc. has launched an informational microsite — or mini website — to provide customers with detailed information about the company’s newest diagnostic platform — the DSS-7000 Battery Service Diagnostic System. The microsite...

Read more...

German Tool Specialist KC Tool Announces Addition of Gedore Tools

As of August 1 KC Tool became the first certified reseller of Gedore Tools in the United States already adding more than 2,500 Gedore tools to its selection of German made tools. KC Tool plans to add an additional 6,000 Gedore Tools over the next few...

Read more...

United Stationers Expands Into Auto Aftermarket

United Stationers announced Sept. 11 that its wholly owned subsidiary, United Stationers Supply Co., signed an agreement to acquire MEDCO, a U.S. wholesaler of automotive aftermarket tools and supplies, and its affiliates including G2S Equipment de Fabrication...

Read more...

Home Engine Point of No Return: Returnless Fuel Injection Systems

Print Print Email Email

If you’ve tried to find the fuel pressure regulator on many late-model engines by looking in the engine compartment, you won’t find it there because the regulator has been relocated to the fuel tank. Engines with “returnless” electronic fuel injection (EFI) systems have the regulator inside the fuel tank. The regulator is part of the fuel pump assembly and is usually located downstream of the in-tank fuel filter.

Why have the vehicle manufacturers gone to this type of setup? To reduce evaporative (EVAP) emissions from the fuel system. In 2004, federal emission regulations required lower EVAP emissions. This, in turn, required a change to returnless fuel injection systems on many vehicles.

On a conventional port fuel injection system, fuel is routed to a fuel rail on the engine to supply the injectors. Fuel pressure is controlled by a vacuum-operated mechanical regulator mounted on the fuel rail. Intake vacuum is routed to the regulator through a vacuum hose and pulls against a spring-loaded diaphragm to maintain a preset pressure differential in the fuel system. When intake manifold vacuum is high, excess fuel pressure is vented through the regulator bypass valve and routed back to the fuel tank via a fuel return line. Unfortunately, this carries a lot of engine heat back to the fuel tank and increases evaporative fuel vapor emissions.

Relocating the regulator to the fuel tank eliminates the circulation of fuel between the engine and tank so the fuel stays cooler. It also simplifies the fuel system plumbing by eliminating the return line. Another advantage is that putting the regulator in the fuel tank keeps it away from engine heat and extends its life. The only downside with the returnless EFI setup is servicing the regulator. If the regulator needs to be replaced for any reason, you have to drop the fuel tank to extract the in-tank fuel pump module. The same goes for the fuel filter, which is also located inside the fuel tank with the pump module on most applications.

Where You’ll Find Returnless EFI
Returnless systems are now used on many late-model cars and trucks. The first ones appeared back in 1993 on certain Chrysler V6 and V8 truck engines. By 1998, all Chrysler cars and light trucks had them. In 1996, Toyota introduced its first returnless system, and Honda went returnless in 2001. General Motors and Ford started down the returnless route in 1999, and in 2004, GM went returnless on most of its full-size pickup trucks and SUVs with the Vortec 6000 (LQ4 and LQ9) engines, including the Cadillac Escalade; Chevy Silverado, Suburban and Tahoe; the GMC Sierra and Yukon; and Hummer H2.

Actually, there are two different types of returnless EFI systems in use: mechanical and electronic. In the mechanical systems, a mechanical regulator is mounted on the fuel pump module to provide a more or less constant fuel pressure to the engine. This type of setup works well with a speed-density EFI system that uses throttle position, intake manifold pressure and engine rpm to determine engine load rather than an airflow sensor.

On 1996 Chrysler and Dodge minivans with returnless EFI, the regulator can be serviced by removing the fuel pump module from the fuel tank, then prying back the locking tabs that hold the regulator in its housing. The regulator can then be pried out and replaced with a new one. There are also two O-rings inside the housing that also should be replaced. Forget these, and the system may not hold normal pressure.

Electronic returnless EFI systems also may be referred to as “On Demand” returnless EFI systems because they use a fuel tank pressure sensor to monitor fuel pressure. The PCM varies the speed of the fuel pump to increase or decrease fuel flow using pulse width modulation (PWM) of the pump’s supply voltage. The PCM determines how much fuel is required based on engine load and inputs from its other sensors. This type of system is typically used on an engine that has an airflow sensor to monitor engine load.

2005 Chevy Silverado
On a 2005 Chevy Silverado, for example, the on demand returnless EFI system has a turbine-style fuel pump inside the fuel tank that routes fuel through an in-tank filter to the in-tank regulator. The regulator maintains a preset pressure to the fuel injection system, which is 55 to 62 psi (or 48 to 54 psi on engine VIN code Z). A fuel pressure sensor is mounted on top of the fuel pump module so pressure and flow can be modified as needed. The system has a number of different operating modes:

 

  • Starting Mode: When the ignition is first turned on, the PCM energizes the fuel pump relay for two seconds. This allows the fuel pump to build pressure in the fuel system. The PCM calculates the air/fuel ratio based on inputs from the engine coolant temperature (ECT), mass air flow (MAF), manifold absolute pressure (MAP) and throttle position (TPS) sensors. The system stays in starting mode until the engine speed reaches a predetermined rpm.

     

     

  • Clear Flood Mode: If the engine floods, the engine can be cleared by pressing the accelerator pedal down to the floor and then cranking the engine. When the throttle position sensor is at wide open throttle, the PCM reduces the fuel injector pulse width in order to increase the air/fuel ratio. The PCM maintains this injector rate as long as the throttle stays wide open and engine speed is below a predetermined rpm. If the throttle is not held wide open, the PCM returns to the normal starting mode.

     

     

  • Run Mode: This includes Open Loop and Closed Loop. When a cold engine is first started and is idling, the system begins Open Loop operation. The PCM ignores the signal from the oxygen sensors and calculates the air/fuel ratio based on inputs from the ECT, MAF, MAP and TPS sensors. The system stays in Open Loop fuel control until both front oxygen sensors are hot and producing a varying voltage signal, engine coolant temperature is above a specified temperature, and a certain amount of time has elapsed after starting the engine.

     

    Specific calibration values for these conditions are stored in the PCM’s electrically erasable programmable read-only memory (EEPROM). Once the conditions are met, the system goes into Closed Loop and the PCM starts to calculate the air/fuel ratio and modify the injector on time using inputs from the oxygen sensors and other sensors.

     

  • Acceleration Mode: When the driver pushes on the accelerator pedal, the engine sucks in a lot of air. To keep the engine from hesitating, the PCM increases the pulse width to the injectors to provide extra fuel enrichment.

     

  • Deceleration Mode: When the driver releases the accelerator pedal, air flow into the engine is reduced. The PCM monitors the corresponding changes in the TPS, MAP and MAF sensors. The PCM shuts off fuel completely when decelerating rapidly, and when the vehicle is coasting down with the throttle closed. This saves fuel and prevents damage to the catalytic converters.

     

     

  • Battery Voltage Correction Mode: If battery voltage is low, the PCM compensates for the weak spark delivered by the ignition system by increasing fuel delivery (enriching the air/fuel mixture), increasing engine idle speed and ignition dwell time.

     

     

  • Fuel Cutoff Mode: The PCM cuts off fuel from the fuel injectors when the following conditions are met in order to protect the powertrain from damage and improve driveability: It does this when the ignition is off (prevents engine run-on when the engine is hot); when the ignition is on but there is no ignition reference signal (prevents flooding or backfiring); when the engine speed is too high (rev limiter); when the vehicle speed is too high (speed limiter); and during an extended, high-speed, closed-throttle coast down (reduces decel emissions and increases engine braking).

Diagnosis
Returnless EFI systems are subject to the same problems as any other type of fuel injection system: pump and relay problems, plugged fuel filters, dirty injectors, even bad gas. Consequently, diagnosis is similar.

 

Returnless EFI systems typically operate at a higher pressure than return-type systems. This is necessary to reduce the risk of fuel boiling and vapor lock in the injector supply rail during hot weather (since there is no recirculation of fuel from the engine back to the tank to keep the fuel supply rail cool). Because of this, a returnless EFI system may not perform well if fuel pressure or flow is less than specifications.

Fuel pressure checks on returnless systems can be done in the usual way by attaching a gauge to the service valve fitting on the fuel supply rail, or you can hook up a scan tool and look at the fuel pressure PID to measure fuel pressure. You can also use a fuel pressure gauge to cross-check the accuracy of the scan tool fuel pressure reading (which will tell you if the fuel pressure sensor is out of calibration).

On returnless systems that use pulse-width modulation to vary the speed of the fuel pump, you should be able to read the value of the control signal on your scan tool. Look for a change in the number when engine speed/load changes. No change would tell you there’s a problem with the fuel pressure sensor, or possibly the fuel pump driver circuit in the PCM.

Fuel volume should also be measured if you suspect a weak pump is starving the engine for fuel at higher speeds and loads. A weak pump can often generate enough pressure at idle to meet specifications, but runs short when the demand for fuel goes up. As a rule, a “good” pump will deliver at least 750 ml (3/4 quart) of fuel in 30 seconds.

Service
Low fuel pressure and/or flow can also be caused by a plugged filter, by restrictions in the fuel line, or low voltage to the pump itself. The filters on most returnless EFI applications are “lifetime” filters with no scheduled replacement interval. Under normal conditions, most should last upwards of 100,000 miles, but they won’t last that long if the vehicle has rust or dirt in the gas tank. Replacing the filter requires dropping the tank, removing the module and, in most cases, replacing the entire fuel pump module because the filter cannot be replaced separately. Imagine telling your customer he needs a new fuel filter and it will cost $600 to change it!

If an in-tank filter has become clogged, or the fuel pump has quit, be sure to inspect the inside of the fuel tank after you pull out the fuel pump module. Dirt and sediment can be removed by steam cleaning the tank. But if a metal tank is rusty, replace the tank to prevent a repeat failure of the new pump module.

Something else to watch out for on returnless EFI systems is contaminants in the fuel rail on the engine. The rail is a dead end as far as fuel circulation is concerned. Fuel flows one-way into the rail and does not return to the tank, so any junk that gets past the fuel filter will end up in the rail or injectors. The injector(s) at the end of the fuel rail(s) furthest from the inlet are the ones most likely to become clogged with gunk.

Injectors can be cleaned with fuel tank additives or on-car flushing equipment. But the rail should be removed and cleaned separately if one or more injectors are found to be clogged, or the injectors are being cleaned off-car or are being replaced.

Gasoline that does not contain adequate levels of detergent can allow fuel varnish deposits to build up in the injectors, restricting fuel delivery and causing lean misfire problems. Deposits can also form on the intake valves, piston tops and combustion chamber that adversely affect performance and compression. Most vehicle manufacturers now recommend using “Top Tier” gasolines that contain higher levels of fuel system cleaning additives to keep the injectors clean and to prevent engine deposit buildup. The alternative is to use some type of fuel system cleaner additive in the fuel tank periodically (say every 3,000 to 5,000 miles), or to recommend a periodic fuel injector and engine cleaning. The latter can often restore normal performance and make a noticeable improvement in fuel economy whether an engine has returnless EFI system or not.

 


Did You Know… In the older return-type systems, the fuel pump delivers more fuel to the engine than it actually needs. The excess fuel is then routed back to the fuel tank through a pressure regulator and return line. But in a returnless system, there is no pressure regulator on the fuel supply rail and no return line back to the tank. The regulator is mounted in the fuel tank and is usually part of the fuel pump module.

 

The following two tabs change content below.

Larry Carley

Larry Carley has more than 30 years of experience in the automotive aftermarket, including experience as an ASE-certified technician, and has won numerous awards for his articles. He has written 12 automotive-related books and developed automotive training software, available at www.carleysoftware.com.
  • Art

    Have 2005 Silverado 2WD 24870mi, engine light came on, stopped at an Advance Auto and they checked with a meter stating “It has a vacuum leak”. How many vacuum lines on this engine and would it cost $600 to fix if it is related to the fuel system?

Latest articles from our other sites:

Tenneco Releases Free Walker App

Tenneco has introduced a new, free mobile app that connects consumers and automotive service providers to the Walker Emissions Control brand and its products. Available now through Google Play, the...More

LIQUI MOLY Introduces New Version Of Its Free Online Tool

LIQUI MOLY's free online oil guide now includes an entire series of new features. The site's filter function for search results is unique worldwide. After entering the make, model and engine version, the...More

Volkswagen: Engine Does Not Start

Vehicle: 2001 Volkswagen Passat GLX, 2.8L Complaint: The customer says the vehicle will not start. Cause: Confirmed the customer’s complaint and found the vehicle did not start. Connected a scan...More

Audi sees boost in U.S. sales during first eight months of 2014

The Volkswagen Group saw another jump in deliveries in August – 2.7 percent increase year over year – with sales topping 740,500. From the start of the year through January, deliveries are up 5.6 percent...More

Nissan Maxima Brake Job Tips

Called the four-door sports car by Nissan, the 2004-2008 Maxima brake system is easy to service with very few complaints of brake noise or pulsation. The system used the same brake pads, rotors and...More

Get Inside the Mind of a Modern Transmission

The transmission game has changed. Solenoids, sensors and computers have replaced vacuum lines, governors and kick down cables on modern automatic transmissions. The tools have also changed: Scan tools,...More

Fountain Industries Introduces ECOMASTER Series 7000 Modular Parts Washers With Effective Aqueous Cleaning

Fountain Industries has introduced its ECOMASTER Series 7000 of modular aqueous parts washing systems for fast and effective parts cleaning for a wide range of industry applications. Designed to meet...More

Introducing The New Snap-on SOLUS Edge Diagnostic Tool

Professional technicians will have an advantage in the repair shop and be ready for anything that comes their way with the latest diagnostic tool from Snap-on, the new SOLUS Edge. With sophisticated functionality,...More