You Have An Oxygen Sensor Code, Now What?

You Have An Oxygen Sensor Code, Now What?

With hundreds of diagnostic codes for oxygen sensors, it is no wonder technicians face a daunting task when identifying the cause (or causes) of an oxygen sensor-specific trouble code. Knowing how to accurately interpret location codes is the first step in the diagnostic process that can be used along with fuel trims and catalyst efficiency.

Sponsored by NTK Oxygen Sensors

With hundreds of diagnostic codes for oxygen sensors, it is no wonder technicians face a daunting task when identifying the cause (or causes) of an oxygen sensor-specific trouble code. Knowing how to accurately interpret location codes is the first step in the diagnostic process that can be used along with fuel trims and catalyst efficiency.

Diagnostic trouble codes often contain location information of the sensor to be diagnosed. Abbreviations like, “B1S1” is a typical location definition in scanners. “B” indicates the bank the sensor is located on. Some vehicles can contain up to six sensors, however Bank 1 will always be closest to cylinder #1 on all engines. Bank 2 may vary by engine orientation, but a good rule of thumb is that bank 2 will be opposite of bank 1.

“S” defines the sensor position on a particular bank. The lower the sensor number, the closer to the engine the sensor will be. S1 will often be between the exhaust manifold and the catalytic converter, while S2 will typically be after the catalytic converter(s). It is important to note, that depending on the manufacturer, sensor locations are the exception not the rule. For these manufactures, refer to the OEM data when troubleshooting codes.

When oxygen sensor testing the vehicle should always be in closed-loop operation. The coolant temperature should be warm and the catalytic converter should have completed the monitor. In this situation, the downstream sensor should not be more active than the upstream sensor. If the downstream sensor is switching more than the upstream sensor, it could indicate a problem with the catalytic converter. Use multiple approaches when determining if the catalytic converter is the problem.

Oxygen sensors also play an important role in fuel trims. Fuel trim is the ECU’s ability to add or subtract fuel (+/-). The ECU has this ability based on the oxygen sensors’ input whether to add or subtract fuel, depending on how much oxygen is present in the exhaust. Fuel trim testing is another diagnostic method in determining catalyst efficiency.

There are two types of fuel trims used in vehicles today: short-term fuel trim (STFT) and long-term fuel trim (LTFT). There are two things that differentiate STFT and LTFT. Short-term fuel trim determines the quality of the air going into the catalytic converter, while long-term fuel trim is used for catalyst efficiency, closed-loop operation and setting injector pulse width. Both fuel trims are calculated from oxygen sensor input pre- and post-catalytic converter. When the ECU uses fuel trims for catalyst efficiency, it monitors the short and long-term fuel trims for +/- 10% per fuel trim. If there is a variance of more than +/-10%, this could indicate a converter issue.

When diagnosing drivability concerns, there are a few situations in which fuel trim testing is not effective. For example: Deceleration Fuel Cut Off (DFCO) where fuel is automatically shut off to the engine when the vehicle is decelerating or slowing down; Wide Open Throttle (WOT), which adds extra fuel to prevent knocking and pre-ignition at high RPM; Warm-up Enrichment (WUE) or “open loop”, where extra fuel is used to warm up the convertor and engine resulting in excessive fuel trims until a closed loop is executed; and in Power Enrichment (PE) mode, when the forced induction of a turbo or supercharger adds more air, requiring more fuel. In this mode oxygen sensor inputs to the ECU are bypassed to run a rich condition.

While there are many reasons for a catalyst efficiency issue, the oxygen sensors are valuable resources in determining the efficiency of a catalytic converter and further diagnosing an emissions system. If you have questions related to emissions repairs, contact NGK Technical Support at (877) 473-6767 option #2 or visit www.ngksparkplugs.com/ntk for more information.

This article is sponsored by: NTK Oxygen Sensors

You May Also Like

A Closer Look: Gasoline Direct Injection (GDI)

Gasoline direct injection (GDI) is used on most new vehicles and requires a different approach to diagnosis and service. GDI technology has been an integral part of helping to improve fuel economy while reducing emissions, and can be found on more than half of the U.S. fleet. In fact, the use of GDI engines has

Gasoline direct injection (GDI) is used on most new vehicles and requires a different approach to diagnosis and service. GDI technology has been an integral part of helping to improve fuel economy while reducing emissions, and can be found on more than half of the U.S. fleet. In fact, the use of GDI engines has grown by over 600% since 2010. This means that in the next five years, 42 million more vehicles with GDI will enter the Aftermarket “Sweet Spot” of 6-12 years old, during which their injectors and related parts may need to be serviced or replaced. While GDI systems have proved effective, these systems encounter specific failures and require an understanding of how they work and how to test them when they set a code.

A Closer Look: Electronic Throttle Bodies

A shop’s reputation is affected by things like accuracy of diagnosis, quality of the repair, and friendly service. Equally as important is the quality of the parts installed. If the shop does everything right, and the part fails, the customer will ultimately be upset with the shop. When a new part fails, the customer is

Enhancing Efficiency and Streamlining Operations: The Benefits of Utilizing Nexpart Multi-Seller for Repair Centers

In today’s fast-paced automotive repair industry, staying ahead of the competition is crucial for repair centers to thrive. One key aspect that can significantly impact operational efficiency and customer satisfaction is the availability of OE, Aftermarket, Heavy Duty & Salvage parts. Here are just a few advantages of incorporating Nexpart Multi-Seller, a cutting-edge parts ecommerce

Get your vehicle road trip ready with these summer tips 

Summertime is a great time to take your car out on the open road, but it’s also important to ensure that your vehicle is in tip-top shape. Regular preventative maintenance can help you avoid costly repairs and keep your car running smoothly. Make sure you’re ready with these helpful tips from Delphi Technologies. Chassis The

A Closer Look: Ignition Coils

OE coils are known for their high failure rates. Engine misfires, rough idle, a decrease in power under acceleration, poor fuel economy, and a check engine light are all signs of an ignition coil that has failed. Read along for more technical information on how to diagnose a failed coil, and why the original equipment

Other Posts

NGK Spark Plugs Expands Spark Plug, Ignition Coil Coverage

Expansion includes 15 new spark plug part numbers, many with high ignitability designs.

Training Opportunities for Service Advisors

Learn about the different resources available to educate service advisors on sensors and ignition components.

New ShopSquad Podcast Offers Interactive Tech Training Support

Watch Philip Austin from NGK/NTK and Doug Kaufman discuss management and technical challenges within the industry.

Engineering behind chassis: high and low-friction parts

What is overengineering? Overengineering is often described as designing a product or solution in an unnecessarily complicated way where a simple solution had been shown to have the same efficiency, or is even more effective than the original.  In the aftermarket world, the OE part is where the journey starts. It begins with testing and