AfterMarketNews Auto Care Pro AutoProJobs Auto-Video.com Brake&Frontend BodyShopBusiness Counterman EngineBuilder Fleet Equipment ImportCar Motorcycle & Powersports News Servicio Automotriz Shop Owner Tire Review Tech Shop Tomorrow's Tech Underhood Service

Automotive Pet Peeves 2: Reader Feedback Is Overwhelming

How many auto repair pet peeves are out there? Well, enough of them that one article wouldn’t hold them all. I’ve received so many emails, texts and phone calls about my article in the February issue that I thought: why not put everyone’s pet peeve...

Read more...

Air Filter Show & Tell: Seeing Is Believing

Air filters are normal wear items that ­require regular checks and ­replacement. Their role is to trap dirt particles that can cause damage to engine cylinders, walls, pistons and piston rings. In fuel-injected vehicles, the air filter also plays...

Read more...

Searching For 'Black Holes': Job Totals Reveal Missed Selling Opportunities

The concept for Maintenance Chronicle is simple: We ask one shop to record their maintenance sales for a two-week period, and then we see what we learn from the results. This edition of Maintenance Chronicle also proved to be valuable for the shop we...

Read more...

MAZDA: Timing Belt & Chain Replacement

This month, we’re going to be looking at the ­timing components on the Mazda line of vehicles. We’ll be focusing on timing belts since they are considered a service item and will present the greater amount of opportunity for replacement. Then, we’ll...

Read more...

Honda Element Brake Job

It may look like a car that was never removed from the box it came in, but the Honda Element isn’t boxy when it comes to the brakes. Based on the CR-V platform, there is also nothing tricky when it comes to service. But, its brake system is hardware...

Read more...

The Changing Maintenance Market: New Technologies Mean More Opportunities

Most of us wake up each morning, not ­realizing that our professional world has changed even as we slept. Our first job of the day is to service a ­vehicle equipped with an oil life monitor. Not only do we discover that modern oil life monitors can...

Read more...

Electronic Proportioning Valve: Doing More With Less Hardware

Anti-lock brake systems (ABS) and the HCU are replacing proportioning, combination and other valves to change the braking forces in the front and rear. This is called Electronic Brake Distribution (EBD) and it can dynamically change the proportioning...

Read more...

NHTSA’s GM Brake Line Corrosion Investigation: Reading Between the Brake Lines

There will be no recalls on some GM vehicles for brake line corrosion. Instead, we received an advisory from the National Highway and Traffic Safety Administration (NHTSA) about brake line inspection and car washes. What was not discussed was the corrosion...

Read more...

2007-2011 Ford Expedition and Navigator Air Suspension

The Ford Expedition air suspension does more than just lift and raise the vehicle. The system levels the vehicle under loads and when a trailer is attached. The system uses only two air bags on the rear axle unlike previous models with air bags on all...

Read more...

Converter Codes: How Long Will the Light Stay Out?

OBDII systems with faulty catalytic converters will normally store a diagnostic trouble code (DTC) when the converter begins to fail. The OBDII converters use an upstream and downstream oxygen sensor to measure the differences in oxygen content between...

Read more...

Maintaining Your Spray Guns

If there’s one piece of equipment that epitomizes the painter and the paint shop, it’s the spray gun. Over the years we’ve seen many spray guns. Although there are operating principles and functions that remain the same, some have been improved...

Read more...

Wheel Bearing Adjustment Tools & Equipment

A recent survey showed that more than half of the bearings on the road today are adjusted incorrectly. A wheel bearing that’s out of adjustment can reduce bearing life and can affect more than just the bearing. An out-of-adjustment bearing affects...

Read more...

Home Emissions Emissions Update: Understanding How Wide Ratio Air/Fuel (WRAF) Sensors Work

Print Print Email Email

Instead of giving a simple rich/lean indication, wide ratio air/fuel sensors measure the “actual” air/fuel ratio. A WRAF sensor can measure mixtures that range from extremely rich to extremely lean (even straight air!). This ability allows the PCM to control fuel mixtures much more precisely, to handle much leaner fuel mixtures, to reduce emissions and to improve fuel economy compared to ordinary switching O2 sensors. WRAF sensors react much faster than ordinary O2 sensors, which allows them to monitor the fuel mixture from individual cylinders as each puff of exhaust blows by the sensor element. The PCM can then adjust the mixture for each cylinder individually to reduce emissions and optimize fuel economy.

Car makers also like the new WRAF sensors because it allows the use of thinner catalyst coatings (platinum, palladium and rhodium) inside the catalytic converter. With the soaring price of precious metals lately, this can add up to significant cost savings for a vehicle manufacturer that produces millions of vehicles a year.

WRAF Operations
WRAF sensors don’t generate a voltage signal like a common zirconia O2 sensor. An ordinary O2 sensor produces a voltage signal of 0.8 to 0.9 volts when the air/fuel mixture is rich, then drops to 0.3 volts or less when the air/fuel mixture goes lean. The transition is quick and abrupt, so the PCM has to keep track of the back and forth rich/lean transitions to estimate the average air/fuel mixture.

By comparison, a WRAF sensor produces a signal that corresponds to the exact air/fuel ratio. Engineers call this a “linear” output because it changes in a smooth, predictable fashion. If you compare the output graphs of an ordinary oxygen sensor versus a WRAF sensor, the differences are obvious.

The ordinary O2 sensor signal voltage starts out high and remains high as long as the air/fuel mixture is rich. Then it drops suddenly when the mixture goes lean and stays low regardless of how much leaner the air/fuel mixture might become. The WRAF sensor signal starts out low and gradually increases its output as the air/fuel ratio gets progressively leaner. This allows the PCM to accurately monitor the exact air/fuel ratio, including extremely lean ratios (18:1 and higher) that are increasingly common on late-model ultra-low emission engines.

The WRAF sensor’s internal voltage output is converted by its built-in circuitry into a variable current signal that can travel in one of two directions (positive or negative). Think of it as a signal generator that can change polarity. The signal gradually increases in the positive direction when the air/fuel mixture becomes leaner.

At the “stoichiometric” or “lambda” point when the air/fuel mixture is perfectly balanced (14.7:1), the current flow stops and there is no current flow in either direction. When the air/fuel ratio becomes progressively richer, the current reverses course and flows in the negative direction.

Doing the Math
Depending on the vehicle application and capabilities of your scan tool, you may also see a lambda PID value displayed for the air/fuel ratio. Lambda is the Greek symbol used to represent the air/fuel ratio. At stoichiometric, lambda equals 1. Lean mixtures have a lambda value greater than 1, while rich mixtures have a lambda value less than one.

The lambda PID reading can be converted to a numeric air/fuel ratio for air and gasoline by multiplying the Lambda value times 14.7.

Example: If the lambda reading is 1.23, the air fuel ratio is actually 18:1 (1.23 x 14.7 = 18.08), which is a lean mixture.

The PCM sends a control reference voltage (typically 3.3 volts on Toyota applications, 2.6 volts on Bosch sensors) to the WRAF sensor through one pair of wires, and monitors the sensor’s output current through a second set of wires. The sensor’s output signal is then processed by the PCM, and can be read on a scan tool as the air/fuel ratio, a fuel trim value and/or a voltage value, depending on the application and the display capabilities of the scan tool. For applications that display a voltage value, anything less than the reference voltage indicate a rich air/fuel ratio, while voltages above the reference voltage indicates a lean air/fuel ratio. On some of the early Toyota OBD II applications, the PCM converts the WRAF sensor voltage to look like that of an ordinary oxygen sensor (this was done to comply with the display requirements of early OBD II regulations).

Sensing Problems
WRAF sensors are designed for a service life of up to 150,000 miles under normal driving conditions. But like ordinary O2 sensors, WRAF sensors are vulnerable to contamination and aging. They can become sluggish and slow to respond to changes in the air/fuel mixture as contaminants build up on the sensor element. Contaminants include phosphorus and zinc from motor oil, silicates from antifreeze, and even sulfur and other additives in gasoline.

Like ordinary O2 sensors, WRAF sensors can also be fooled by air leaks in the exhaust system (leaky exhaust manifold gaskets) or compression problems (such as leaky or burned exhaust valves) that allow unburned air to pass through the engine and enter the exhaust.

It’s important to make sure a bad WRAF sensor has been correctly diagnosed because the OEM list price on some of these sensors is several hundred dollars.

WRAF Diagnostics
As a rule, the OBD II system will detect any problems that affect the operation of a WRAF sensor and set a DTC that corresponds to the type of fault. Generic OBD II codes that indicate a fault in the WRAF sensor heater circuit include: P0036, P0037, P0038, P0042, P0043, P0044, P0050, P0051, P0052, P0056, P0057, P0058, P0062, P0063 and P0064.

Codes that indicate a possible fault in the WRAF sensor itself include any code from P0130 to P0167. There may be additional OEM “enhanced” P1 codes that will vary depending on the year, make and model of the vehicle.

The symptoms of a bad WRAF sensor are essentially the same as those of a conventional oxygen sensor: An engine running rich, poor fuel economy and/or an emissions failure due to higher than normal levels of carbon monoxide (CO) in the exhaust.

Other factors that may affect the output of a WRAF sensor include bad wiring connections or a faulty heater circuit relay (if there are heater codes), or a wiring fault, leaky exhaust manifold gasket or leaky exhaust valves if there are sensor codes indicating a lean fuel condition (P0171 or P0174, for example).

To check the response of a WRAF sensor, plug a scan tool into the vehicle’s diagnostic connector, start the engine and create a momentary change in the air/fuel radio by snapping the throttle or feeding propane into the throttle body. Look for a response from the WRAF sensor. No change in the indicated air/fuel ratio, sensor voltage value or short-term fuel trim number would indicate a bad sensor that needs to be replaced.

Other scan tool PIDS to look at include the OBD II oxygen heater monitor status, OBD II oxygen sensor monitor status, loop status and coolant temperature. The status of the monitors will tell you if the OBD II system has run its self-checks on the sensor. The loop status will tell you if the PCM is using the WRAF sensor input to control the air/fuel ratio. If the system remains in open loop once the engine is warm, check for a possible faulty coolant sensor.

Another way to check the output of a WRAF sensor is to connect a digital voltmeter or graphing multimeter in series with the sensor’s voltage reference line (refer to a wiring diagram for the proper connection). Connect the black negative lead to the sensor end of the reference wire, and the red positive lead to the PCM end of the wire. The meter should then show an increase in voltage (above the reference voltage) if the air/fuel mixture is lean, or a drop in voltage (below the reference voltage) if the mixture is rich. WRAF sensor output can also be observed on a digital storage oscilloscope by connecting one lead to the reference circuit and the other to the sensor control circuit. This will generate a waveform that changes with the air/fuel ratio. The scope can also be connected to the WRAF sensor heater wires to check the duty cycle of the heater circuit. You should see a square wave pattern and a decrease in the duty cycle as the engine warms up.

The following two tabs change content below.

Larry Carley

Larry Carley has more than 30 years of experience in the automotive aftermarket, including experience as an ASE-certified technician, and has won numerous awards for his articles. He has written 12 automotive-related books and developed automotive training software, available at www.carleysoftware.com.
Latest articles from our other sites:

Carl Edwards Earns First Bosch Aftermarket NA Contribution For Speedway Children's Charities

Carl Edwards raced his Bosch-equipped No. 19 Subway Toyota to victory in Sunday’s Coca-Cola 600 NASCAR Sprint Cup Series  Race at Charlotte Motor Speedway. In recognition of the victory, Bosch Aftermarket...More

Akebono Announces Partnership With Kettering University's Formula SAE Team

Akebono Brake Corporation has recently become a Silver Partner sponsor of Kettering University’s Formula SAE (Society of Automotive Engineers) team for the 2015/2016 season. Akebono made a monetary contribution...More

Tips For Spark Plug Removal

Removal or installation of spark plugs on modern vehicles requires extreme precision and care. Before removing a spark plug, check to see if it’s still working properly and whether the engine itself...More

Oil Service for Today’s Vehicles

You have most likely been made aware over the last few years that you need to be diligent in which oil you choose when servicing today’s modern vehicles. Hopefully your team is trained to look up the...More

Electronic Proportioning Valve: Doing More With Less Hardware

Anti-lock brake systems (ABS) and the HCU are replacing proportioning, combination and other valves to change the braking forces in the front and rear. This is called Electronic Brake Distribution (EBD)...More

NHTSA’s GM Brake Line Corrosion Investigation: Reading Between the Brake Lines

There will be no recalls on some GM vehicles for brake line corrosion. Instead, we received an advisory from the National Highway and Traffic Safety Administration (NHTSA) about brake line inspection and...More

Beta Tools Offers Double Swivel End Socket Wrenches

Beta Tools of Italy offers #80 double-end, swivel socket head wrenches, which are made to swivel 180° on a single-plane axis to allow access to confined spaces. They are bright polished chrome vanadium...More

Electronic Specialties Introduces Its Automotive Test Lead Set

Electronic Specialties introduces a new product, #635 CATIII Automotive Test Lead Set. This kit includes a basic assortment of accessory test leads, which are in compliance with IEC Safety Rating of...More